Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate Models Overheat Antarctica

Computer analyses of global climate have consistently overstated warming in Antarctica, concludes a new study. The findings can help scientists improve computer models and determine if the southernmost continent will warm significantly this century, a major research question because of Antarctica's potential impact on global sea-level rise.

"We can now compare computer simulations with observations of actual climate trends in Antarctica," says Andrew Monaghan of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., lead author of the study.

"This is showing us that, over the past century, most of Antarctica has not undergone the fairly dramatic warming that has affected the rest of the globe. The challenges of studying climate in this remote environment make it difficult to say what the future holds for Antarctica's climate."

The study marks the first time that scientists have been able to compare the past 50 to 100 years of Antarctic climate with simulations run on computer models.

The models are a primary method for researchers to project future climate.
Scientists have used atmospheric observations to confirm that computer models are accurately simulating climate for the other six continents.

Antarctica's climate is of worldwide interest, in part because of the enormous water locked up in its ice sheets. If those vast ice sheets were to begin to melt, sea level could rise across the globe and inundate low-lying coastal areas. Yet, whereas climate models accurately simulate the last century of warming for the rest of the world, they have unique challenges simulating Antarctic climate because of limited information about the continent's harsh weather patterns.

Monaghan and his colleagues at NCAR and Ohio State University, in Columbus, published their findings last month in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

The authors compared recently constructed temperature data sets from Antarctica, based on data from ice cores and ground weather stations, to twentieth century simulations from computer models used by scientists to simulate global climate.

While the observed Antarctic temperatures rose by about 0.2 degrees Celsius (0.4 degrees Fahrenheit) over the past century, the climate models simulated increases in Antarctic temperatures during the same period of 0.75 degrees C (1.4 degrees F). The error appeared to be caused by models overestimating the amount of water vapor in the Antarctic atmosphere, the new study concludes.

The models, however, have correctly captured trends in Antarctic snowfall, including increases in snowfall in the late twentieth century, prior to a decrease over the last decade.

Part of the reason that Antarctica has barely warmed has to do with the ozone hole over the continent. The lack of ozone is chilling the middle and upper atmosphere, altering wind patterns in a way that keeps comparatively warm air from reaching the surface. Unlike the rest of the continent, the Antarctic Peninsula has warmed by several degrees, in part because the winds there are drawing in warmer air from the north.

The study delivered a mixed verdict on Antarctica's potential impact on sea-level rise. The Intergovernmental Panel on Climate Change, which operates under the auspices of the United Nations, has estimated that sea-level rise could amount to 18 to 59 centimeters (7 to 23 inches) this century, in part because of melting glaciers worldwide. The new findings suggest that other effects of warming in Antarctica over the next century could reduce that by about 5 centimeter (2 inches) if the continent warms by 3 degrees C (5.4 degrees F) as computer models have indicated. The reason is that the warmer air over Antarctica would hold more moisture and generate more snowfall, thereby locking up additional water in the continent's ice sheets.

But the authors caution that model projections of future Antarctic climate may be unreliable.

"The research clearly shows that you can actually slow down sea-level rise when you increase temperatures over Antarctica because snowfall increases, but warmer temperatures also have the potential to speed up sea-level rise due to enhanced melting along the edges of Antarctica," says Monaghan, who did some of his research at Ohio State University before going to NCAR. "Over the next century, whether the ice sheet grows from increased snowfall or shrinks due to more melt will depend on how much temperatures increase in Antarctica, and potentially on erosion at the ice sheet edge by the warmer ocean and rising sea level."

"The current generation of climate models has improved over previous generations, but still leaves Antarctic surface temperature projections for the twenty- first century with a high degree of uncertainty," adds co-author and NCAR scientist David Schneider. "On a positive note, this study points out that water vapor appears to be the key cause of the problematic Antarctic temperature trends in the models, which will guide scientists as they work to improve the climate simulations."

This study was funded by National Science Foundation and by the Department of Energy.

Peter Weiss | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>