Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did dust storms make the Dust Bowl drought worse?

05.05.2008
The Dust Bowl drought of the 1930s was one of the worst environmental disasters of the Twentieth Century anywhere in the world.

Three million people left their farms on the Great Plains during the drought and half a million migrated to other states, almost all to the West. But the Dust Bowl drought was not meteorologically extreme by the standards of the Nineteenth and Twentieth Centuries.

Indeed the 1856-65 drought may have involved a more severe drop in precipitation. It was the combination of drought and poor land use practice that created the environmental disaster.

Much of the Plains had been plowed up in the decades before the 1930s as wheat cropping expanded west. Alas, while natural prairie grasses can survive a drought the wheat that was planted could not and, when the precipitation fell, it shriveled and died exposing bare earth to the winds. This was the ultimate cause of the wind erosion and terrible dust storms that hit the Plains in the 1930s. There had never been dust storms like these in prior droughts. In the worst years of the 1930s on as many as a quarter of the days dust reduced visibility to less than a mile. More soil was lost by wind erosion than the Mississippi carried to the sea. Although the numbers are not known, hundreds if not thousands of Plains residents died from 'dust pneumonia', a euphemism for clogging of the lungs with dirt. For wonderful books on the topic see Worster (1979, Dust Bowl: The Southern Plains in the 1930s) and Egan (2006, The Worst Hard Time).

But did the dust storms have a meteorological impact? There are two good reasons to ask this question. First we know from studies elsewhere in the world (e.g. the Sahel) that dust can impact circulation and precipitation. Second the Dust Bowl drought was unique in its spatial pattern - further north than is typical for a La Nina forced, or La Nina plus warm subtropical North Atlantic forced, drought. See our page "Was the Dust Bowl Predictable?". Did the dust storms impact either the intensity of the drought or its area of impact?

We have addressed this using the Goddard Institute for Space Studies atmosphere GCM which contains a dust module that can lift up dust from the surface, transport it in the atmosphere and allow it to interact with solar and longwave radiation transfer in the atmosphere. See the GISS Science Brief, "Desert Dust, Dust Storms and Climate" and the references therein.

First we ran a small ensemble of simulations with the atmosphere model forced by 1920s sea surface temperatures (SSTs) to act as our base of comparison for the simulated 1930s. Next we created a small ensemble of simulations with the model forced by 1930s SSTs. This created a drought that, as is typical for models forced by 1930s SSTs, was centered too far into the Southwest relative to the observed drought.

Then we introduced an estimate of the increased dust source from crop failure in the 1930s. This was guided by maps of wind erosion prepared in the 1930s by the newly created Soil Conservation Service. Regions of severe wind erosion were put into the model as potential dust sources although the model's dust module determines the actual lifting up, transport and deposition of the dust. The modeled dust emissions are around half the size of the scanty estimates from 1930s observations so the modeled climate impact may still be on the conservative side.

Figure 1 shows a 'box and whiskers' plot of the precipitation anomalies over the Great Plains for the modeled 1932-39 period minus the 1920s for both observations and the two model simulations. Here we have used the anomalies for each year in the observations and each year in the model run and for each of the 5 ensemble members. The boxes contain the one standard deviation spread of the anomalies and the whiskers bound the entire distribution. The distribution for the 1920s is of course spread around zero. The SST forcing alone creates a clear drought. The combination of SST forcing and interactive dust forcing intensifies the drought.

Kevin Krajick | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/res/div/ocp/drought/dust_storms.shtml

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>