Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will global warming take a short break?

02.05.2008
Improved climate predictions suggest a reduced warming trend during the next 10 years

To date climate change projections, as published in the last IPCC report, only considered changes in future atmospheric composition. This strategy is appropriate for long-term changes in climate such as predictions for the end of the century.

However, in order to predict short-term developments over the next decade, models need additional information on natural climate variations, in particular associated with ocean currents. Lack of sufficient data has hampered such predictions in the past. Scientists at IFM-GEOMAR and from the MPI for Meteorology have developed a method to derive ocean currents from measurements of sea surface temperature (SST). The latter are available in good quality and global coverage at least for the past 50 years. With this additional information, natural decadal climate variations, which are superimposed on the long-term anthropogenic warming trend, can be predicted. The improved predictions suggest that global warming will weaken slightly during the following 10 years.

“Just to make things clear: we are not stating that anthropogenic climate change won’t be as bad as previously thought”, explains Prof. Mojib Latif from IFM-GEOMAR. “What we are saying is that on top of the warming trend there is a long-periodic oscillation that will probably lead to a to a lower temperature increase than we would expect from the current trend during the next years”, adds Latif. “That is like driving from the coast to a mountainous area and crossing some hills and valleys before you reach the top”, explains Dr. Johann Jungclaus from the MPI for Meteorology. “In some years trends of both phenomena, the anthropogenic climate change and the natural decadal variation will add leading to a much stronger temperature rise.”

Emmy-Noether1 fellow and lead author Dr. Noel Keenlyside from IFM-GEOMAR continues: “In addition to the greenhouse gas concentrations we are using observed SST’s of the past decades in our climate model simulations, a method which has already successfully been applied for seasonal predictions and El Niño forecasting. The SST’s influence the winds and the heat exchange between ocean and atmosphere, and both factors impact ocean currents. The results are very encouraging and show that at least for some regions around the world, it is possible to predict natural climate oscillations on decadal time scale. Europe and North America are two such regions because they are influenced by the North Atlantic and Tropical Pacific, respectively.”

Decadal climate precitions are not weather forecasts, as Prof. Latif expands upon: “Such forecasts will not enable us to tell you whether or not we will have a white Christmas in 2012 in northern Germany, but we will be able to provide a tendency as to whether or not some decades will be warmer or cooler than average. Of course, always with the assumption that no other unforeseen effects such as volcanic eruptions occur, which can have a substantial effect on our climate as well”, summarizes Prof. Latif

Andreas Villwock | alfa
Further information:
http://www.ifm-geomar.de

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>