Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists head to warming Alaska on ice core expedition

02.05.2008
The state of Alaska has the dubious distinction of leading the lower 48 in the effects of a warming climate. Small villages are slipping into the sea due to coastal erosion, soggy permafrost is cracking buildings and trapping trucks.

In an effort to better understand how the Pacific Northwest fits into the larger climate-change picture, scientists from the University of New Hampshire and University of Maine are heading to Denali National Park on the second leg of a multi-year mission to recover ice cores from glaciers in the Alaska wilderness.

Cameron Wake of the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and Karl Kreutz of the University of Maine Climate Change Institute are leading the expedition, which is funded by the National Science Foundation.

This year’s month-long reconnaissance mission will identify specific drill sites for surface-to-bedrock ice cores that will provide researchers with the best climate records going back some 2,000 years. The fieldwork is part of a decade-long goal to gather climate records from ice cores from around the entire Arctic region.

“Just as any one meteorological station can’t tell you about regional or hemispheric climate change, a series of ice cores is needed to understand the regional climate variability in the Arctic,” says Wake, research associate professor at UNH. “This effort is part of a broader strategy that will give us a fuller picture.”

Kreutz says the 2,000-year ice core record will provide a good window for determining how the climate system has been affected by volcanic activity, the variability of solar energy, changes in greenhouse gas concentrations and the dust and aerosols in the atmosphere that affect how much sunlight reaches the Earth.

“This is a joint effort in the truest sense,” says Kreutz, who has collaborated with Wake in both Arctic and Asian research for the better part of a decade. Kreutz’s UMaine team will consist of Erich Osterberg, who received his Ph.D. in December, second-year M.S. candidate Ben Gross, and Seth Campbell, an undergraduate majoring in Earth science.

Wake conducted an initial aerial survey of the Denali terrain two years ago but notes there have been “no boots on the ground.” Through May, Wake, his Ph.D. student Eric Kelsey, the UMaine team, and Canadian ice-core driller Mike Waszkiewicz will visit potential deep drilling sites and use a portable, ground-penetrating radar to determine the ice thickness and internal structure on specific glaciers. They will be looking for “layer-cake” ice with clear, well-defined annual stratigraphy.

A clear record from Denali will help round out the bigger paleoclimate picture by adding critical information gathered from ice cores recovered in the North Pacific, all of which can be compared to a wealth of climate data already gathered in the North Atlantic region.

According to Wake, scientists have long thought the North Atlantic drives global climate changes. However, there are now indications that a change in the North Pacific might happen first and be followed by a North Atlantic response. “We need to better understand the relationship in terms of the timing and magnitude of climate change between these two regions,” he says.

At the potential drill sites, the scientists will also collect samples for chemical analysis from 20-foot-deep snowpits and shallow ice cores, and install automatic weather stations at 7,800 feet and 14,000 feet. The chemical analyses, which will be carried out at both UNH and UMaine labs, are needed to decipher changes in temperature, atmospheric circulation, and environmental change such as the phenomenon known as “Arctic haze,” which has brought heavily polluted air masses to the region for decades from North America, Europe, and Asia.

David Sims | EurekAlert!
Further information:
http://www.unh.edu
http://www.eos.unh.edu/newsimage/denali_lg.jpg

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>