Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Before fossil fuels, Earth's minerals kept CO2 in check

30.04.2008
Over millions of years carbon dioxide levels in the atmosphere have been moderated by a finely-tuned natural feedback system— a system that human emissions have recently overwhelmed.

A joint University of Hawaii / Carnegie Institution study published in the advance online edition of Nature Geoscience links the pre-human stability to connections between carbon dioxide in the atmosphere and the breakdown of minerals in the Earth’s crust. While the process occurs far too slowly to have halted the historical buildup of carbon dioxide from human sources, the finding gives scientists new insights into the complexities of the carbon cycle.

Ken Caldeira of the Carnegie Institution’s Department of Global Ecology and Richard Zeebe of the University of Hawaii studied levels of carbon dioxide in the atmosphere over the past 610,000 years using data from gas bubbles trapped in Antarctic ice cores. They used these records, plus geochemical data from ocean sediments, to model how carbon dioxide released into the atmosphere by volcanoes and other natural sources is ultimately recycled via carbon-bearing minerals back into the crust.

When carbon dioxide levels in the atmosphere rise, the chemical reactions that break down silicate minerals in soils are accelerated. Among the products of these reactions are calcium ions, which dissolve in water and are washed to the ocean by rivers. Marine organisms such as mollusks combine the calcium ions with dissolved carbon dioxide to make their shells (calcium carbonate), which removes both calcium and carbon dioxide from the ocean, restoring the balance.

The researchers found that over hundreds of thousands of years the equilibrium between carbon dioxide input and removal was never more than one to two percent out of balance, a strong indication of a natural feedback system. This natural feedback acts as a thermostat which is critical for the long-term stability of climate. During Earth's history it has probably helped to prevent runaway greenhouse and icehouse conditions over time scales of millions to billions of years — a prerequisite for sustaining liquid water on Earth's surface.

“The system is finely in tune,” says Caldeira. “That one or two percent imbalance works out to an average imbalance in natural carbon dioxide emissions that is thousands of times smaller than our current emissions from industry and the destruction of forests.”

Previous researchers had suggested that such a system existed, but Caldeira and Zeebe’s study provides the first observational evidence supporting the theory, and confirms its role in stabilizing the carbon cycle. But because it operates over such a long time scale—the time scale over which landscapes are eroded and washed to the sea—this geological feedback system offers little comfort with respect to the current climate crisis.

Carbon dioxide is added naturally to the atmosphere and oceans from volcanoes and hydrothermal vents at a rate of about 0.1 billion tons of carbon each year. Human industrial activity and destruction of forests is adding carbon about 100 times faster, approximately 10 billion tons of carbon each year.

“The imbalance in the carbon cycle that we are creating with our emissions is huge compared to the kinds of imbalances seen over the time of the glacial ice core records,” says Caldeira. “We are emitting CO2 far too fast to expect mother nature to mop up our mess anytime soon. Continued burning of coal, oil and gas will result in long-term changes to our climate and to ocean chemistry, lasting many thousands of years.”

Ken Caldeira | EurekAlert!
Further information:
http://www.stanford.edu
http://www.CIW.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>