Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone hole recovery may reshape southern hemisphere climate change

28.04.2008
A full recovery of the stratospheric ozone hole could modify climate change in the Southern Hemisphere and even amplify Antarctic warming, according to scientists from the University of Colorado at Boulder, the National Oceanic and Atmospheric Administration and NASA.

While Earth's average surface temperatures have been increasing, the interior of Antarctica has exhibited a unique cooling trend during the austral summer and fall caused by ozone depletion, said Judith Perlwitz of the Cooperative Institute for Research in Environmental Sciences, a joint institute of CU-Boulder and NOAA. "If the successful control of ozone-depleting substances allows for a full recovery of the ozone hole over Antarctica, we may finally see the interior of Antarctica begin to warm with the rest of the world," Perlwitz said.

Perlwitz is lead author of a new study on the subject to be published April 26 in Geophysical Research Letters. Co-authors include Steven Pawson and Eric Nielson of NASA's Goddard Space Flight Center in Greenbelt, Md., and Ryan Fogt and William Neff of NOAA's Earth System Research Laboratory in Boulder. The study was supported by NASA's Modeling and Analysis Program.

The authors used a NASA supercomputer model that included interactions between the climate and stratospheric ozone chemistry to examine how changes in the ozone hole influence climate and weather near Earth's surface, said Perlwitz.

The study authors calculated that when stratospheric ozone levels return to near pre-1969 levels by the end of the 21st century, large-scale atmospheric circulation patterns now shielding the Antarctic interior from warmer air masses to the north will begin to break down during the austral summer. The circulation patterns are collectively known as a positive phase of the Southern Annular Mode, or SAM.

The scientists found that as ozone levels recover, the lower stratosphere over the polar region will absorb more harmful ultraviolet radiation from the sun. This could cause air temperatures roughly 6 to 12 miles above Earth's surface to rise by as much as 16 degrees Fahrenheit, reducing the strong north-south temperature gradient that currently favors the positive phase of SAM, said the research team.

The supercomputer modeling effort also indicated that ozone hole recovery would weaken the intense westerly winds that currently whip around Antarctica and block air masses from crossing into the continent's interior. As a result, Antarctica would no longer be isolated from the warming patterns affecting the rest of the world.

NASA's Pawson said ozone recovery over Antarctica would essentially reverse summertime climate and atmospheric circulation changes that have been caused by the presence of the ozone hole. "It appears that ozone-induced climate change occurred quickly, over 20 to 30 years, in response to the rapid onset of the ozone hole," he said. "These seasonal changes will decay more slowly than they built up, since it takes longer to cleanse the stratosphere of ozone-depleting gases than it took for them to build up."

The seasonal shift in large-scale circulation patterns could have repercussions for Australia and South America as well. Other studies have shown that the positive phase of SAM is associated with cooler temperatures over much of Australia and increased rainfall over Australia's southeast coastline.

During late spring and early summer, the positive phase of SAM also is associated with drier conditions in South America's productive agricultural areas like Argentina, Brazil, Uruguay and Paraguay, said Perlwitz. If ozone recovery induces a shift away from a positive SAM, Australia could experience warmer and drier conditions while South America could get wetter, she said.

But just how influential a full stratospheric ozone recovery will be on Southern Hemisphere climate largely depends on the future rate of greenhouse gas emissions, according to the GRL authors. Projected increases in human-emitted greenhouse gases like carbon dioxide will be the main driver for strengthening the positive phase of SAM.

"In running our model simulations, we assumed that greenhouse gases like carbon dioxide would double over the next 40 years and then slowly level off," said Perlwitz. "If human activities cause more rapid increases in greenhouse gases, or if we continue to produce these gases for a longer period of time, then the positive SAM may dominate year-round and dwarf any climatic effects caused by ozone recovery."

Judith Perlwitz | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>