Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone-hole recovery may spur Antarctic warming

25.04.2008
A full recovery of the stratospheric ozone hole could strongly
modify climate change in the Southern Hemisphere and possibly amplify warming of the Antarctic continent, a new study finds.
"If the successful control of ozone-depleting substances allows for a full recovery of the ozone hole over Antarctica, we may finally see the interior of Antarctica begin to warm with the rest of the world," says Judith Perlwitz of the University of Colorado at Boulder and the National Oceanic and Atmospheric

Administration (NOAA). Perlwitz is lead author of the study.

While average surface temperatures have been increasing globally, the interior of Antarctica has exhibited a unique cooling trend during the austral (Southern
Hemisphere) summer and fall, Perlwitz notes. The cooling is attributed to ozone
depletion. She and her colleagues conclude that, as stratospheric ozone levels
return to near pre-1969 levels by the end of the 21st century, large-scale
atmospheric circulation patterns currently shielding the Antarctic interior from
warmer air masses to the north will begin to break down during the austral summer.

These circulation patterns are collectively known as a positive phase of the Southern Annular Mode, or SAM.

The scientists find that, as ozone levels recover, the lower stratosphere over the polar region will absorb more ultraviolet radiation from the sun. This will cause air temperatures roughly 10-20 kilometers (6-12 miles) above Earth's surface to rise by as much as 9 degrees Celsius, reducing the strong north-south temperature gradient that currently favors the positive phase of SAM.

The new study also indicates that ozone-hole recovery would weaken the intense
westerly winds that currently whiz around Antarctica and block air masses from
crossing into the continent's interior. As a result, Antarctica would no longer be isolated from the warming patterns affecting the rest of the world.
Ozone recovery will essentially reverse summertime climate and atmospheric
circulation changes that have been caused by the presence of the ozone hole, says co-author Steven Pawson of NASA Goddard Space Flight Center in Greenbelt, Md.
To examine how changes in the ozone hole might influence climate and weather
near Earth's surface, the scientists used a NASA computer model that includes
interactions between the climate and stratospheric ozone chemistry. The team will publish its findings on 26 April 2008 in Geophysical Research Letters, a journal of the American Geophysical Union, or AGU.
Besides affecting Antarctica, the anticipated seasonal shift in large-scale
circulation patterns would also have repercussions for Australia and South
America. Studies show that the positive phase of SAM is associated with cooler
temperatures over much of Australia and increased rainfall over Australia's
southeast coastline. The positive phase of SAM is also associated, during late
spring and early summer, with drier conditions in South America's productive
agricultural areas: Argentina, Brazil, Uruguay and Paraguay. If ozone recovery
induces a shift away from a positive SAM, Australia could experience warmer and drier conditions while South America could get wetter, according to Perlwitz.
But just how influential a full stratospheric ozone recovery will be on Southern Hemisphere climate largely depends on the future rate of greenhouse gas emissions, according to the study. Projected increases in human-emitted

greenhouse gases such as carbon dioxide will be the main driver for strengthening the positive phase of SAM.

"In running our model simulations, we assumed that greenhouse gases like carbon dioxide would double over the next 40 years and then slowly taper off. If human activities cause more rapid increases in greenhouse gases, or if we continue to produce these gases for a longer period of time, then the positive SAM may dominate year-round and dwarf any climatic effects caused by ozone recovery," says Perlwitz.

Perlwitz of the NOAA Cooperative Institute for Research in Environmental
Studies, in Boulder, and Pawson also collaborated on the study with other
scientists at NASA Goddard and at NOAA's Earth System Research Laboratory,
also in Boulder.
NASA provided major funding for the study.

Peter Weiss | American Geophysical Union
Further information:
http://www.colorado.edu
http://www.agu.org
http://www.nasa.gov

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>