Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone-hole recovery may spur Antarctic warming

25.04.2008
A full recovery of the stratospheric ozone hole could strongly
modify climate change in the Southern Hemisphere and possibly amplify warming of the Antarctic continent, a new study finds.
"If the successful control of ozone-depleting substances allows for a full recovery of the ozone hole over Antarctica, we may finally see the interior of Antarctica begin to warm with the rest of the world," says Judith Perlwitz of the University of Colorado at Boulder and the National Oceanic and Atmospheric

Administration (NOAA). Perlwitz is lead author of the study.

While average surface temperatures have been increasing globally, the interior of Antarctica has exhibited a unique cooling trend during the austral (Southern
Hemisphere) summer and fall, Perlwitz notes. The cooling is attributed to ozone
depletion. She and her colleagues conclude that, as stratospheric ozone levels
return to near pre-1969 levels by the end of the 21st century, large-scale
atmospheric circulation patterns currently shielding the Antarctic interior from
warmer air masses to the north will begin to break down during the austral summer.

These circulation patterns are collectively known as a positive phase of the Southern Annular Mode, or SAM.

The scientists find that, as ozone levels recover, the lower stratosphere over the polar region will absorb more ultraviolet radiation from the sun. This will cause air temperatures roughly 10-20 kilometers (6-12 miles) above Earth's surface to rise by as much as 9 degrees Celsius, reducing the strong north-south temperature gradient that currently favors the positive phase of SAM.

The new study also indicates that ozone-hole recovery would weaken the intense
westerly winds that currently whiz around Antarctica and block air masses from
crossing into the continent's interior. As a result, Antarctica would no longer be isolated from the warming patterns affecting the rest of the world.
Ozone recovery will essentially reverse summertime climate and atmospheric
circulation changes that have been caused by the presence of the ozone hole, says co-author Steven Pawson of NASA Goddard Space Flight Center in Greenbelt, Md.
To examine how changes in the ozone hole might influence climate and weather
near Earth's surface, the scientists used a NASA computer model that includes
interactions between the climate and stratospheric ozone chemistry. The team will publish its findings on 26 April 2008 in Geophysical Research Letters, a journal of the American Geophysical Union, or AGU.
Besides affecting Antarctica, the anticipated seasonal shift in large-scale
circulation patterns would also have repercussions for Australia and South
America. Studies show that the positive phase of SAM is associated with cooler
temperatures over much of Australia and increased rainfall over Australia's
southeast coastline. The positive phase of SAM is also associated, during late
spring and early summer, with drier conditions in South America's productive
agricultural areas: Argentina, Brazil, Uruguay and Paraguay. If ozone recovery
induces a shift away from a positive SAM, Australia could experience warmer and drier conditions while South America could get wetter, according to Perlwitz.
But just how influential a full stratospheric ozone recovery will be on Southern Hemisphere climate largely depends on the future rate of greenhouse gas emissions, according to the study. Projected increases in human-emitted

greenhouse gases such as carbon dioxide will be the main driver for strengthening the positive phase of SAM.

"In running our model simulations, we assumed that greenhouse gases like carbon dioxide would double over the next 40 years and then slowly taper off. If human activities cause more rapid increases in greenhouse gases, or if we continue to produce these gases for a longer period of time, then the positive SAM may dominate year-round and dwarf any climatic effects caused by ozone recovery," says Perlwitz.

Perlwitz of the NOAA Cooperative Institute for Research in Environmental
Studies, in Boulder, and Pawson also collaborated on the study with other
scientists at NASA Goddard and at NOAA's Earth System Research Laboratory,
also in Boulder.
NASA provided major funding for the study.

Peter Weiss | American Geophysical Union
Further information:
http://www.colorado.edu
http://www.agu.org
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>