Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone-hole recovery may spur Antarctic warming

25.04.2008
A full recovery of the stratospheric ozone hole could strongly
modify climate change in the Southern Hemisphere and possibly amplify warming of the Antarctic continent, a new study finds.
"If the successful control of ozone-depleting substances allows for a full recovery of the ozone hole over Antarctica, we may finally see the interior of Antarctica begin to warm with the rest of the world," says Judith Perlwitz of the University of Colorado at Boulder and the National Oceanic and Atmospheric

Administration (NOAA). Perlwitz is lead author of the study.

While average surface temperatures have been increasing globally, the interior of Antarctica has exhibited a unique cooling trend during the austral (Southern
Hemisphere) summer and fall, Perlwitz notes. The cooling is attributed to ozone
depletion. She and her colleagues conclude that, as stratospheric ozone levels
return to near pre-1969 levels by the end of the 21st century, large-scale
atmospheric circulation patterns currently shielding the Antarctic interior from
warmer air masses to the north will begin to break down during the austral summer.

These circulation patterns are collectively known as a positive phase of the Southern Annular Mode, or SAM.

The scientists find that, as ozone levels recover, the lower stratosphere over the polar region will absorb more ultraviolet radiation from the sun. This will cause air temperatures roughly 10-20 kilometers (6-12 miles) above Earth's surface to rise by as much as 9 degrees Celsius, reducing the strong north-south temperature gradient that currently favors the positive phase of SAM.

The new study also indicates that ozone-hole recovery would weaken the intense
westerly winds that currently whiz around Antarctica and block air masses from
crossing into the continent's interior. As a result, Antarctica would no longer be isolated from the warming patterns affecting the rest of the world.
Ozone recovery will essentially reverse summertime climate and atmospheric
circulation changes that have been caused by the presence of the ozone hole, says co-author Steven Pawson of NASA Goddard Space Flight Center in Greenbelt, Md.
To examine how changes in the ozone hole might influence climate and weather
near Earth's surface, the scientists used a NASA computer model that includes
interactions between the climate and stratospheric ozone chemistry. The team will publish its findings on 26 April 2008 in Geophysical Research Letters, a journal of the American Geophysical Union, or AGU.
Besides affecting Antarctica, the anticipated seasonal shift in large-scale
circulation patterns would also have repercussions for Australia and South
America. Studies show that the positive phase of SAM is associated with cooler
temperatures over much of Australia and increased rainfall over Australia's
southeast coastline. The positive phase of SAM is also associated, during late
spring and early summer, with drier conditions in South America's productive
agricultural areas: Argentina, Brazil, Uruguay and Paraguay. If ozone recovery
induces a shift away from a positive SAM, Australia could experience warmer and drier conditions while South America could get wetter, according to Perlwitz.
But just how influential a full stratospheric ozone recovery will be on Southern Hemisphere climate largely depends on the future rate of greenhouse gas emissions, according to the study. Projected increases in human-emitted

greenhouse gases such as carbon dioxide will be the main driver for strengthening the positive phase of SAM.

"In running our model simulations, we assumed that greenhouse gases like carbon dioxide would double over the next 40 years and then slowly taper off. If human activities cause more rapid increases in greenhouse gases, or if we continue to produce these gases for a longer period of time, then the positive SAM may dominate year-round and dwarf any climatic effects caused by ozone recovery," says Perlwitz.

Perlwitz of the NOAA Cooperative Institute for Research in Environmental
Studies, in Boulder, and Pawson also collaborated on the study with other
scientists at NASA Goddard and at NOAA's Earth System Research Laboratory,
also in Boulder.
NASA provided major funding for the study.

Peter Weiss | American Geophysical Union
Further information:
http://www.colorado.edu
http://www.agu.org
http://www.nasa.gov

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>