Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northern lights glimmer with unexpected trait

24.04.2008
An international team of scientists has detected that some of the glow of Earth's aurora is polarized, an unexpected state for such emissions.

Measurements of this newfound polarization in the Northern Lights may provide scientists with fresh insights into the composition of Earth's upper atmosphere, the configuration of its magnetic field, and the energies of particles from the Sun, the researchers say.

If observed on other planets, the phenomenon might also give clues to the shape of the Sun's magnetic field as it curls around other bodies in the solar system.

When a beam of light is polarized, its electromagnetic waves share a common orientation, say, aligned vertically, or at some other angle. Until now, scientists thought that light from energized atoms and molecules in planetary upper atmospheres could not be polarized. The reason is simple: In spite of the low number of particles at the altitudes concerned (above 100 kilometers (60 miles)), there are still numerous collisions between molecules and gas atoms. Those collisions depolarize the emitted light.

Fifty years ago, an Australian researcher, Robert Duncan, claimed to observe what looked like polarization of auroral light, but other scientists found that single observation unconvincing.

To revisit the question, Jean Lilensten of the Laboratory of Planetology of Grenoble, France, and his colleagues studied auroral light with a custom-made telescope during the winters of 2006-2007 and 2007-2008. They made their observations from Svalbard Island, Norway, which is in the polar region, at a latitude of 79 degrees north.

At the north and south magnetic poles, many charged particles in the solar wind--a flow of electrically charged matter from the Sun--are captured by the planet's field and forced to plunge into the atmosphere. The particles strike atmospheric gases, causing light emissions.

Lilensten and his colleagues observed weak polarization of a red glow that radiates at an altitude of 220 kilometers (140 miles). The glow results from electrons hitting oxygen atoms. The scientists had suspected that such light might be polarized because Earth's magnetic field at high latitudes funnels the electrons, aligning the angles at which they penetrate the atmosphere.

The finding of auroral polarization "opens a new field in planetology," says Lilensten, who is the lead author of the study. He and his colleagues reported their results on 19 April in Geophysical Research Letters, a publication of the American Geophysical Union (AGU).

Fluctuations in the polarization measurements can reveal the energy of the particles coming from the Sun when they enter Earth's atmosphere, Lilensten notes. The intensity of the polarization gives clues to the composition of the upper atmosphere, particularly with regard to atomic oxygen.

Because polarization is strongest when the telescope points perpendicularly to the magnetic field lines, the measurements also provide a way to determine magnetic field configurations, Lilensten adds. That could prove especially useful as astronomers train their telescopes on other planetary atmospheres. If polarized emissions are observed there as well, the measurements may enable scientists to understand how the Sun's magnetic field is distorted by obstacles such as the planets Venus and Mars, which lack intrinsic magnetic fields.

Title:
"Polarization in aurorae: A new dimension for space environments studies"
Authors:
Jean Lilensten, Mathieu Barthelemy, Roland Thissen, Cyril Simon, Odile Dutuit:
CNRS-UJF, Laboratoire de Planetologie de Grenoble, Batiment D de physique, Grenoble, France; Cyril Simon is also at ESTEC, Noordwijk, Netherlands;

Joran Moen: Department of Physics, University of Oslo, Blindern, Oslo, Norway, and ESTEC, Noordwijk, Netherlands;

Dag A. Lorentzen, Fred Sigernes: Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Svalbard, Norway;

Pierre Olivier Amblard: CNRS-INPG, GIPSA Lab, BP 46, Saint Martin d'Heres, France.

Citation:
Lilensten, J., J. Moen, M. Barthelemy, R. Thissen, C. Simon, D. A. Lorentzen, O.

Dutuit, P. O. Amblard, and F. Sigernes (2008), Polarization in aurorae: A new dimension for space environments studies, Geophys. Res. Lett., 35, L08804, doi:10.1029/2007GL033006.

Contact information for coauthors:
Jean Lilensten: office: +33 (0) 4 76 51 41 49, email: jean.lilensten@obs.ujf- grenoble.fr

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.obs.ujf-grenoble.fr

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>