Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of ancient supercontinent revealed

23.04.2008
In a paper published in this month’s ‘Geophysical Journal International’, Dr Graeme Eagles from the Earth Sciences Department at Royal Holloway, University of London, reveals how one of the largest continents ever to exist met its demise.

Gondwana was a ‘supercontinent’ that existed between 500 and 180 million years ago. For the past four decades, geologists have debated how Gondwana eventually broke up, developing a multitude of scenarios which can be loosely grouped into two schools of thought – one theory claiming the continent separated into many small plates, and a second theory claiming it broke into just a few large pieces. Dr Eagles, working with Dr Matthais König from the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, Germany, has devised a new computer model showing that the supercontinent cracked into two pieces, too heavy to hold itself together.

Gondwana comprised of most of the landmasses in today’s Southern Hemisphere, including Antarctica, South America, Africa, Madagascar, Australia-New Guinea, and New Zealand, as well as Arabia and the Indian subcontinent of the Northern Hemisphere. Between around 250 and 180 million years ago, it formed part of the single supercontinent ‘Pangea’.

Evidence suggests that Gondwana began to break up at around 183 million years ago. Analysing magnetic and gravity anomaly data from some of Gondwana’s first cracking points – fracture zones in the Mozambique Basin and the Riiser-Larsen Sea off Antarctica – Dr Eagles and Dr König reconstructed the paths that each part of Gondwana took as it broke apart. The computer model reveals that the supercontinent divided into just two large, eastern and western plates. Approximately 30 million years later, these two plates started to split to form the familiar continents of today’s Southern Hemisphere.

‘You could say that the process is ongoing as Africa is currently splitting in two along the East African Rift,’ says Dr Eagles. ‘The previously held view of Gondwana initially breaking up into many different pieces was unnecessarily complicated. It gave fuel to the theory that a plume of hot mantle, about 2,000 to 3,000 kilometres wide, began the splitting process. A straight forward split takes the spotlight off plumes as active agents in the supercontinent’s breakup, because the small number of plates involved resembles the pattern of plate tectonics in the rest of Earth’s history during which plumes have played bit parts.’

According to Dr Eagles and Dr König’s study, because supercontinents like Gondwana are gravitationally unstable to begin with, and have very thick crusts in comparison to oceans, they eventually start to collapse under their own weight.

Says Dr Eagles, ‘These findings are a starting point from which more accurate and careful research can be made on the supercontinent. The new model challenges the positions of India and Sri Lanka in Gondwana which have been widely used for the past 40 years, assigning them very different positions in the supercontinent. These differences have major consequences for our understanding of Earth.’

Robert Massey | alfa
Further information:
http://www.ras.org.uk

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>