Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers warm up to melt's role in Greenland ice loss

22.04.2008
In July 2006, researchers afloat in a dinghy on a mile-wide glacial lake in Greenland studied features of the lake and ice 40 feet below. Ten days later the entire contents of the lake emptied through a crack in the ice with a force equaling the pummeling water of Niagara Falls. The entire process only took 90 minutes.

Observations before, during and after this swift, forceful event were collected and analyzed by a team led by Ian Joughin of the University of Washington in Seattle and Sarah Das of the Woods Hole Oceanographic Institution in Woods Hole, Mass. Their first-of-a-kind observations confirm the structure of the Greenland Ice Sheet plumbing, and go further to show that summertime melt indeed contributes to the speed up of ice loss. They also conclude, however, that summertime melt is not as critical a factor as other causes of ice loss. Research by Joughin and colleagues, published April 17 in Science Express, was funded in part by NASA and the National Science Foundation.

Scientists know that Greenland is losing ice. Much of Greenland's ice sheet is slow moving, creeping toward the ocean where the ice can calve off as icebergs. The landscape is also dumps ice into the ocean through outlet glaciers – rivers of ice that channel through valleys of bedrock and move at least 10 times faster than the ice sheet. Whether or not summertime melt has a significant influence on the speed of these flows has been an endless topic of debate among scientists – until now.

"For years people have said that the increasing length and intensity of the melt season in Greenland could yield an increase in ice discharge," said Joughin, lead author on the paper in Science. "Greater melt in future summers would cause ice to flow faster toward the coast and draw down more of the ice sheet."

Scientists have used computer models to show how melt could contribute to the observed speed up of the ice sheet. Meltwater travels through cracks in the ice down to the base of the mile-thick ice sheet where it forms a lubricating layer between the ice and the land. The fluid layer then makes it easier for the ice to slip away toward the ocean. The effect, however, had never been observed in Greenland on a large-scale, a fact that motivated Joughin and colleagues to get a closer look.

In 2006, Joughin embarked on an expedition by airplane to locate lakes on the ice sheet that they had identified in advance using NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra and Aqua satellites. The team selected two lakes full of meltwater and set up Global Positioning System (GPS) equipment to measure ground movement in a limited area but over frequent intervals, every two days. They also collected data from the NASA-launched and Canadian-owned satellite RADARSAT, which could provide similar movement information over an area hundreds of miles wide, but could make those measurements only every 24 days. When combined, these data helped the researchers identify relative changes in ice movements across the entire ice sheet.

They found that the influence of the violent draining of the lakes had a short-lived influence on the local movement of the ice sheet. Speedup during periods of summer were widespread across Greenland, suggesting that the ice sheet's plumbing is composed of a drainage network that quickly distributes the lubricating meltwater throughout the base of the ice sheet, as opposed to the water remaining confined to a single isolated crack.

As for the relative speed of movement across Greenland, the researchers found that the slow-moving ice sheet saw seasonal increases in speed ranging from 50 to 100 percent. Despite the speed up, the ice sheet makes a relatively small contribution to ice loss compared to the already fast-moving outlet glaciers. The fast-moving outlet glaciers, however, are not affected as much by seasonal melt, which accounts for a speed increase of up to 15 percent and in many cases much less. "If you're really going to get a lot of ice out of Greenland, that would have to occur through outlet glaciers, but those are not being affected very much by seasonal melt," Joughin said. "The outlet glaciers are more affected by the removal of their shelves and grounded ice in their fjords, which decreases resistance to ice flow."

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/greenland_speedup.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>