Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Historic Soviet nuclear test site offers insights for today's nuclear monitoring

Newly published data from the Semipalatinsk Nuclear Test Site, the Soviet Union’s primary nuclear weapons testing ground during the Cold War, can help today’s atomic detectives fine-tune their monitoring of nuclear explosions around the world, according to research presented at the annual meeting of the Seismological Society of America.

From 1949 to 1989, Semipalatinsk was scrutinized furtively by U2 spy planes, satellites and seismologists hoping to learn more about the Soviet Union’s weapons capabilities. Now, for the first time, researchers can compare the information gleaned from these operations with the actual records from the test site to see how accurate Western researchers were in predicting the number and size of Semipalatinsk’s nuclear detonations.

The treasure trove of data from Semipalatinsk are especially important in light of the fact that only three nuclear tests—back-to-back tests in India and Pakistan in 1998 and a 2006 test in North Korea--have been conducted since the Comprehensive Nuclear Test Ban Treaty of 1996, said Paul Richards of Lamont-Doherty Earth Observatory of Columbia University.

As nuclear monitoring techniques have improved over the past ten years, “there has also been a lack—thank goodness—of weapons tests to actually record, from which to gain monitoring experience,” Richards, an expert in using seismological methods to detect nuclear tests, said. “It is therefore helpful in training ourselves today, in the work of monitoring, to look back at monitoring efforts in the past --- to see how well we did and what the challenges were.”

The first nuclear detonations near Semipalatinsk in the 1940s were above ground, and the U.S. Air Force collected atmospheric traces of the explosions. Testing moved underground in later decades, and seismological data became the primary way of monitoring the tests. In all, 456 nuclear tests took place at the site, with the last occurring in 1989. The veil of secrecy surrounding the site was lifted in the 1990s, when details of the tests were published in numerous books and scientific papers in Russia and Kazakhstan.

By comparing historical monitoring data with information from the new publications, Richards and colleagues can determine which underground tests were detected through seismic data at great distances, versus which kinds of tests would be detected by regional seismic stations today. They can also compare the monitors’ estimates of weapons yield—the size of the explosions—with the official estimates in the publications.

So far, the comparisons suggest “that today we can do a very good job indeed” of monitoring nuclear tests using seismological and other data, Richards said.

The new publications also offer a glimpse at how the Soviet-era nuclear program was organized and led, how radioactivity from the explosions affected people and animals, and how the overall environmental health of the area was altered by decades-long testing, he noted.

Nan Broadbent | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>