Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Journey to the center of the earth: Discovery sheds light on mantle formation

14.04.2008
Jonathan Snow, UH geologist, unearths ancient rocks from ocean floor dating back 2 billion years

Uncovering a rare, two-billion-year-old window into the Earth’s mantle, a University of Houston professor and his team have found our planet’s geological history is more complex than previously thought.

Jonathan Snow, assistant professor of geosciences at UH, led a team of researchers in a North Pole expedition, resulting in a discovery that could shed new light on the mantle, the vast layer that lies beneath the planet’s outer crust. These findings are described in a paper titled “Ancient, highly heterogeneous mantle beneath Gakkel Ridge, Arctic Ocean,” appearing recently in Nature, the weekly scientific journal for biological and physical sciences research.

These two-billion-year-old rocks that time forgot were found along the bottom of the Arctic Ocean floor, unearthed during research voyages in 2001 and 2004 to the Gakkel Ridge, an approximately 1,000-mile-long underwater mountain range between Greenland and Siberia. This massive underwater mountain range forms the border between the North American and Eurasian plates beneath the Arctic Ocean, where the two plates diverge.

These were the first major expeditions ever undertaken to the Gakkel Ridge, and these latest published findings are the fruit of several years of research and millions of dollars spent to retrieve and analyze these rocks.

The mantle, the rock layer that comprises about 70 percent of the Earth’s mass, sits several miles below the planet’s surface. Mid-ocean ridges like Gakkel, where mantle rock is slowly pushing upward to form new volcanic crust as the tectonic plates slowly move apart, is one place geologists look for clues about the mantle. Gakkel Ridge is unique because it features – at some locations – the least volcanic activity and most mantle exposure ever discovered on a mid-ocean ridge, allowing Snow and his colleagues to recover many mantle samples.

“I just about fell off my chair,” Snow said. “We can’t exaggerate how important these rocks are – they’re a window into that deep part of the Earth.”

Venturing out aboard a 400-foot-long research icebreaker, Snow and his team sifted through thousands of pounds of rocks scooped up from the ocean floor by the ship’s dredging device. The samples were labeled and cataloged and then cut into slices thinner than a human hair to be examined under a microscope. That is when Snow realized he found something that, for many geologists, is as rare and fascinating as moon rocks – mantle rocks devoid of sea floor alteration. Analysis of the isotopes of osmium, a noble metal rarer than platinum within the mantle rocks, indicated they were two billion years old. The use of osmium isotopes underscores the significance of the results, because using them for this type of analysis is still a new, innovative and difficult technique.

Since the mantle is slowly moving and churning within the Earth, geologists believe the mantle is a layer of well-mixed rock. Fresh mantle rock wells up at mid-ocean ridges to create new crust. As the tectonic plates move, this crust slowly makes its way to a subduction zone, a plate boundary where one plate slides underneath another and the crust is pushed back into the mantle from which it came.

Because this process takes about 200 million years, it was surprising to find rocks that had not been remixed inside the mantle for two billion years. The discovery of the rocks suggests the mantle is not as well-mixed or homogenous as geologists previously believed, revealing that the Earth’s mantle preserves an older and more complex geologic history than previously thought. This opens the possibility of exploring early events on Earth through the study of ancient rocks preserved within the Earth’s mantle.

The rocks were found during two expeditions Snow and his team made to the Arctic, each lasting about two months. The voyages were undertaken while Snow was a research scientist at the Max Planck Institute in Germany, and the laboratory study was done by his research team that now stretches from Hawaii to Houston to Beijing.

Since coming to UH in 2005, Snow’s work stemming from the Gakkel Ridge samples has continued, with more research needed to determine exactly why these rocks remained unmixed for so long. Further study using a laser microprobe technique for osmium analysis available only in Australia is planned for next year.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>