Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Journey to the center of the earth: Discovery sheds light on mantle formation

Jonathan Snow, UH geologist, unearths ancient rocks from ocean floor dating back 2 billion years

Uncovering a rare, two-billion-year-old window into the Earth’s mantle, a University of Houston professor and his team have found our planet’s geological history is more complex than previously thought.

Jonathan Snow, assistant professor of geosciences at UH, led a team of researchers in a North Pole expedition, resulting in a discovery that could shed new light on the mantle, the vast layer that lies beneath the planet’s outer crust. These findings are described in a paper titled “Ancient, highly heterogeneous mantle beneath Gakkel Ridge, Arctic Ocean,” appearing recently in Nature, the weekly scientific journal for biological and physical sciences research.

These two-billion-year-old rocks that time forgot were found along the bottom of the Arctic Ocean floor, unearthed during research voyages in 2001 and 2004 to the Gakkel Ridge, an approximately 1,000-mile-long underwater mountain range between Greenland and Siberia. This massive underwater mountain range forms the border between the North American and Eurasian plates beneath the Arctic Ocean, where the two plates diverge.

These were the first major expeditions ever undertaken to the Gakkel Ridge, and these latest published findings are the fruit of several years of research and millions of dollars spent to retrieve and analyze these rocks.

The mantle, the rock layer that comprises about 70 percent of the Earth’s mass, sits several miles below the planet’s surface. Mid-ocean ridges like Gakkel, where mantle rock is slowly pushing upward to form new volcanic crust as the tectonic plates slowly move apart, is one place geologists look for clues about the mantle. Gakkel Ridge is unique because it features – at some locations – the least volcanic activity and most mantle exposure ever discovered on a mid-ocean ridge, allowing Snow and his colleagues to recover many mantle samples.

“I just about fell off my chair,” Snow said. “We can’t exaggerate how important these rocks are – they’re a window into that deep part of the Earth.”

Venturing out aboard a 400-foot-long research icebreaker, Snow and his team sifted through thousands of pounds of rocks scooped up from the ocean floor by the ship’s dredging device. The samples were labeled and cataloged and then cut into slices thinner than a human hair to be examined under a microscope. That is when Snow realized he found something that, for many geologists, is as rare and fascinating as moon rocks – mantle rocks devoid of sea floor alteration. Analysis of the isotopes of osmium, a noble metal rarer than platinum within the mantle rocks, indicated they were two billion years old. The use of osmium isotopes underscores the significance of the results, because using them for this type of analysis is still a new, innovative and difficult technique.

Since the mantle is slowly moving and churning within the Earth, geologists believe the mantle is a layer of well-mixed rock. Fresh mantle rock wells up at mid-ocean ridges to create new crust. As the tectonic plates move, this crust slowly makes its way to a subduction zone, a plate boundary where one plate slides underneath another and the crust is pushed back into the mantle from which it came.

Because this process takes about 200 million years, it was surprising to find rocks that had not been remixed inside the mantle for two billion years. The discovery of the rocks suggests the mantle is not as well-mixed or homogenous as geologists previously believed, revealing that the Earth’s mantle preserves an older and more complex geologic history than previously thought. This opens the possibility of exploring early events on Earth through the study of ancient rocks preserved within the Earth’s mantle.

The rocks were found during two expeditions Snow and his team made to the Arctic, each lasting about two months. The voyages were undertaken while Snow was a research scientist at the Max Planck Institute in Germany, and the laboratory study was done by his research team that now stretches from Hawaii to Houston to Beijing.

Since coming to UH in 2005, Snow’s work stemming from the Gakkel Ridge samples has continued, with more research needed to determine exactly why these rocks remained unmixed for so long. Further study using a laser microprobe technique for osmium analysis available only in Australia is planned for next year.

Lisa Merkl | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>