Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Absence of clouds caused pre-human supergreenhouse periods

11.04.2008
In a world without human-produced pollution, biological productivity controls cloud formation and may be the lever that caused supergreenhouse episodes during the Cetaceous and Eocene, according to Penn State paleoclimatologists.

"Our motivation was the inability of climate models to reproduce the climate of the supergreenhouse episodes of the Cetaceous and Eocene adequately," said Lee R. Kump, professor of geosciences. "People have tried increasing carbon dioxide in the models to explain the warming, but there are limits to the amounts that can be added because the existing proxies for carbon dioxide do not show such large amounts."

In general, the proxies indicate that the Cretaceious and Eocene atmosphere never exceeded four times the current carbon dioxide level, which is not enough for the models to create supergreenhouse conditions. Some researchers have tried increasing the amount of methane, another greenhouse gas, but there are no proxies for methane. Another approach is to assume that ocean currents changed, but while researchers can insert new current information into the models, they cannot get the models to create these ocean current scenarios.

Kump and David Pollard, senior research associate, Earth and Environmental Systems Institute, looked for another way to create a world where mean annual temperatures in the tropics were above 100 degrees Fahrenheit and polar temperatures were in the 50-degree Fahrenheit range. Changing the Earth's albedo -- the amount of sunlight reflected into space – by changing cloud cover will produce supergreenhouse events, the researchers report in today's (April 11) issue of Science.

According to the researchers, changes in the production of cloud condensation nuclei, the tiny particles around which water condenses to form rain drops and cloud droplets, decreased Earth's cloud cover and increase the sun's warming effect during supergreenhouse events.

Normal cloud cover reflects about 30 percent of the sun's energy back into space. Kump and Pollard were looking for a scenario that allowed in 6 to 10 percent more sunlight.

"In today's world, human generated aerosols, pollutants, serve as cloud condensation nuclei," says Kump. "Biologically generated gases are dominant in the prehuman world. The abundance of these gases is correlated with the productivity of the oceans."

Today, the air contains about 1,000 particles that can serve as cloud condensation nuclei (CCN) in a cubic centimeter (less than a tenth of a cubic inch). Pristine ocean areas lacking human produced aerosols are difficult to find, but in those areas algae produce dimethylsulfide that eventually becomes the CCNs of sulfuric acid or methane sulfonic acid.

Algae's productivity depends on the amounts of nutrients in the water and these nutrients come to the surface by upwelling driven by the winds. Warming would lead to ocean stratification and less upwelling.

"The Cetaceous was biologically unproductive due to less upwelling in the ocean and thermal stress on land and in the sea," says Kump. "That means fewer cloud condensation nuclei."

When there are large numbers of CCN, there are more cloud droplets and smaller droplets, consequently more cloud cover and brighter clouds. With fewer CCN, there are fewer droplets and they are larger. The limit to droplet size is 16 to 20 microns because the droplets then are heavy enough to fall out as rain.

"We began with the assumption that what would change was not the extent of clouds, but their brightness," says Kump. "The mechanism would lead to reduced reflection but not cloudiness."

What they found was that the clouds were less bright and that there were also fewer clouds. If they lowered the production of biogenic CCNs too much, their model created a world with remarkable warming inconsistent with life. However, they could alter the productivity in the model to recreate the temperature regime during supergreenhouse events.

"The model reduces cloud cover from about 64 percent to 55 percent which lets in a large amount of direct sunlight," Kump says. "The increased breaks in the clouds, fewer clouds and less reflective clouds produced the amount of warming we were looking for."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>