Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Absence of clouds caused pre-human supergreenhouse periods

11.04.2008
In a world without human-produced pollution, biological productivity controls cloud formation and may be the lever that caused supergreenhouse episodes during the Cetaceous and Eocene, according to Penn State paleoclimatologists.

"Our motivation was the inability of climate models to reproduce the climate of the supergreenhouse episodes of the Cetaceous and Eocene adequately," said Lee R. Kump, professor of geosciences. "People have tried increasing carbon dioxide in the models to explain the warming, but there are limits to the amounts that can be added because the existing proxies for carbon dioxide do not show such large amounts."

In general, the proxies indicate that the Cretaceious and Eocene atmosphere never exceeded four times the current carbon dioxide level, which is not enough for the models to create supergreenhouse conditions. Some researchers have tried increasing the amount of methane, another greenhouse gas, but there are no proxies for methane. Another approach is to assume that ocean currents changed, but while researchers can insert new current information into the models, they cannot get the models to create these ocean current scenarios.

Kump and David Pollard, senior research associate, Earth and Environmental Systems Institute, looked for another way to create a world where mean annual temperatures in the tropics were above 100 degrees Fahrenheit and polar temperatures were in the 50-degree Fahrenheit range. Changing the Earth's albedo -- the amount of sunlight reflected into space – by changing cloud cover will produce supergreenhouse events, the researchers report in today's (April 11) issue of Science.

According to the researchers, changes in the production of cloud condensation nuclei, the tiny particles around which water condenses to form rain drops and cloud droplets, decreased Earth's cloud cover and increase the sun's warming effect during supergreenhouse events.

Normal cloud cover reflects about 30 percent of the sun's energy back into space. Kump and Pollard were looking for a scenario that allowed in 6 to 10 percent more sunlight.

"In today's world, human generated aerosols, pollutants, serve as cloud condensation nuclei," says Kump. "Biologically generated gases are dominant in the prehuman world. The abundance of these gases is correlated with the productivity of the oceans."

Today, the air contains about 1,000 particles that can serve as cloud condensation nuclei (CCN) in a cubic centimeter (less than a tenth of a cubic inch). Pristine ocean areas lacking human produced aerosols are difficult to find, but in those areas algae produce dimethylsulfide that eventually becomes the CCNs of sulfuric acid or methane sulfonic acid.

Algae's productivity depends on the amounts of nutrients in the water and these nutrients come to the surface by upwelling driven by the winds. Warming would lead to ocean stratification and less upwelling.

"The Cetaceous was biologically unproductive due to less upwelling in the ocean and thermal stress on land and in the sea," says Kump. "That means fewer cloud condensation nuclei."

When there are large numbers of CCN, there are more cloud droplets and smaller droplets, consequently more cloud cover and brighter clouds. With fewer CCN, there are fewer droplets and they are larger. The limit to droplet size is 16 to 20 microns because the droplets then are heavy enough to fall out as rain.

"We began with the assumption that what would change was not the extent of clouds, but their brightness," says Kump. "The mechanism would lead to reduced reflection but not cloudiness."

What they found was that the clouds were less bright and that there were also fewer clouds. If they lowered the production of biogenic CCNs too much, their model created a world with remarkable warming inconsistent with life. However, they could alter the productivity in the model to recreate the temperature regime during supergreenhouse events.

"The model reduces cloud cover from about 64 percent to 55 percent which lets in a large amount of direct sunlight," Kump says. "The increased breaks in the clouds, fewer clouds and less reflective clouds produced the amount of warming we were looking for."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>