Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 year after Solomon Islands, scientists learn barrier to earthquakes weaker than expected

07.04.2008
Discovery means other sites such as the Cascadia Subduction Zone in northwestern North America have potential for more severe earthquakes than once thought

On the one year anniversary of a devastating earthquake and tsunami in the Solomon Islands that killed 52 people and displaced more than 6,000, scientists are revising their understanding of the potential for similar giant earthquakes in other parts of the globe.

Geoscientists from The University of Texas at Austin’s Jackson School of Geosciences and their colleagues report this week that the rupture, which produced an 8.1 magnitude earthquake, broke through a geological province previously thought to form a barrier to earthquakes. This could mean that other sites with similar geological barriers, such as the Cascadia Subduction Zone in northwestern North America, have the potential for more severe earthquakes than once thought.

In an advance online publication in the journal Nature Geoscience, the scientists report that the rupture started on the Pacific seafloor near a spot where two of Earth’s tectonic plates are subducting, or diving below, a third plate.

The two subducting plates—the Australian and Woodlark plates—are also spreading apart and sliding past one another. The boundary between them, called Simbo Ridge, was thought to work as a barrier to the propagation of a rupture because the two plates are sliding under the overriding Pacific plate at different rates, in different directions, and each is likely to have a different amount of built-up stress and friction with the overlying rock. But the boundary did not stop the rupture from spreading from one plate to the other.

“Both sides of that boundary had accumulated elastic strain,” says Fred Taylor, a researcher at the university’s Institute for Geophysics and principal investigator for the project. “Those plates hadn’t had an earthquake for quite a while and they were both ready to rupture. When the first segment ruptured, there was probably stress transferred from one to the other.

“What our work shows is that this is a barrier, but not a reliable one,” says Taylor. In other words, it resists rupturing, but not insurmountably. The work has implications for earthquakes in other parts of the world.

“Cascadia is an important boundary because of its potential for a great earthquake in the future,” says Taylor. “You have these transform faults separating the plates—Juan de Fuca, Gorda and Explorer. If such boundaries are not a barrier to rupture in the Solomons, there’s no reason to believe they are in Cascadia either.”

The last great earthquake along the Cascadia Subduction Zone was in the year 1700. The intensity of the quake has been estimated at around magnitude 9. If it happened today, it could be devastating to people living in the northwestern U.S. and western Canada. The geological record suggests such great quakes occur there every few hundred years.

The scientists were able to piece together where and how the fault near the Solomons ruptured by observing how it affected corals living in shallow water around the islands. Because corals normally grow right up to the low-tide water mark, scientists can readily measure how far they have been displaced up or down by an earthquake. In the case of uplift, scientists measure how far the coral dies back from its previous height as a result of being thrust up out of the water. In the case of subsidence, scientists measure how deep the coral is compared to its usual maximum depth below sea level.

“In many ways the corals are much better than manmade instruments as you don't need to deploy corals or change their batteries—they just go on measuring uplift and subsidence for you anyhow,” says Taylor.

With funds from the Jackson School of Geosciences, Taylor was able to travel to the Solomons just 10 days after the earthquake to make observations, an extremely swift trip in the world of scientific field work. It was part of a new rapid response capability the Jackson School is developing for research that cannot wait several months for government or foundation grants to be approved.

“The trip wouldn’t have happened without the Jackson School support,” said Taylor. “We are extremely grateful for that.”

J.B. Bird | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>