Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 year after Solomon Islands, scientists learn barrier to earthquakes weaker than expected

07.04.2008
Discovery means other sites such as the Cascadia Subduction Zone in northwestern North America have potential for more severe earthquakes than once thought

On the one year anniversary of a devastating earthquake and tsunami in the Solomon Islands that killed 52 people and displaced more than 6,000, scientists are revising their understanding of the potential for similar giant earthquakes in other parts of the globe.

Geoscientists from The University of Texas at Austin’s Jackson School of Geosciences and their colleagues report this week that the rupture, which produced an 8.1 magnitude earthquake, broke through a geological province previously thought to form a barrier to earthquakes. This could mean that other sites with similar geological barriers, such as the Cascadia Subduction Zone in northwestern North America, have the potential for more severe earthquakes than once thought.

In an advance online publication in the journal Nature Geoscience, the scientists report that the rupture started on the Pacific seafloor near a spot where two of Earth’s tectonic plates are subducting, or diving below, a third plate.

The two subducting plates—the Australian and Woodlark plates—are also spreading apart and sliding past one another. The boundary between them, called Simbo Ridge, was thought to work as a barrier to the propagation of a rupture because the two plates are sliding under the overriding Pacific plate at different rates, in different directions, and each is likely to have a different amount of built-up stress and friction with the overlying rock. But the boundary did not stop the rupture from spreading from one plate to the other.

“Both sides of that boundary had accumulated elastic strain,” says Fred Taylor, a researcher at the university’s Institute for Geophysics and principal investigator for the project. “Those plates hadn’t had an earthquake for quite a while and they were both ready to rupture. When the first segment ruptured, there was probably stress transferred from one to the other.

“What our work shows is that this is a barrier, but not a reliable one,” says Taylor. In other words, it resists rupturing, but not insurmountably. The work has implications for earthquakes in other parts of the world.

“Cascadia is an important boundary because of its potential for a great earthquake in the future,” says Taylor. “You have these transform faults separating the plates—Juan de Fuca, Gorda and Explorer. If such boundaries are not a barrier to rupture in the Solomons, there’s no reason to believe they are in Cascadia either.”

The last great earthquake along the Cascadia Subduction Zone was in the year 1700. The intensity of the quake has been estimated at around magnitude 9. If it happened today, it could be devastating to people living in the northwestern U.S. and western Canada. The geological record suggests such great quakes occur there every few hundred years.

The scientists were able to piece together where and how the fault near the Solomons ruptured by observing how it affected corals living in shallow water around the islands. Because corals normally grow right up to the low-tide water mark, scientists can readily measure how far they have been displaced up or down by an earthquake. In the case of uplift, scientists measure how far the coral dies back from its previous height as a result of being thrust up out of the water. In the case of subsidence, scientists measure how deep the coral is compared to its usual maximum depth below sea level.

“In many ways the corals are much better than manmade instruments as you don't need to deploy corals or change their batteries—they just go on measuring uplift and subsidence for you anyhow,” says Taylor.

With funds from the Jackson School of Geosciences, Taylor was able to travel to the Solomons just 10 days after the earthquake to make observations, an extremely swift trip in the world of scientific field work. It was part of a new rapid response capability the Jackson School is developing for research that cannot wait several months for government or foundation grants to be approved.

“The trip wouldn’t have happened without the Jackson School support,” said Taylor. “We are extremely grateful for that.”

J.B. Bird | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>