Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Under the sea

31.03.2008
Scientists explore huge volume of molten rock now frozen into the crust under the ocean’s floor

For the first time scientists have mapped the layers of once molten rock that lie beneath the edges of the Atlantic Ocean and measure over eight miles thick in some locations.

The research, reported in this week’s edition of Nature, gives us a better understanding of what may have happened during the break up of continents to form new mid-ocean ridges. The same volcanic activity in the North Atlantic may also have caused the subsequent release of massive volumes of greenhouse gases which led to a spike in global temperatures 55 million years ago.

The scientists, led by Professor Robert White, FRS at the University of Cambridge, also developed a new method of seeing through the thick lava flows beneath the seafloor to the sediments and structures beneath. The technique is now being employed to further oil exploration of the area which was previously restricted by the inability to image through the lava flows.

When a continent breaks apart, as Greenland and Northwest Europe did 55 million years ago, it is sometimes accompanied by a massive outburst of volcanic activity due to a 'hot spot' in the mantle that lies beneath the 55 mile thick outer skin of the earth. When the North Atlantic broke open, it produced 1–2 million cubic miles (5–10 million cubic kilometres) of molten rock which extended across 300,000 square miles (one million square kilometres). Most of the volcanic rock is now underwater and buried by more recent sediments. However the edge of this huge volcanic region is visible on land in a few places including the Giant’s Causeway in Northern Ireland.

For the first time scientists mapped the huge quantities of molten rock in the North Atlantic. The rock had been injected into the crust of the earth at a depth of 5–10 miles (10–20 kilometres) beneath the surface along the line of the continental breakup 55 million years ago. Using seismic methods, they were able to map the layers of lava flows both near the surface and deep into the earth.

There is a considerable controversy at present as to whether the large scale volcanism was caused by abnormally hot mantle deep in the earth (a 'hot spot') or whether it was caused by some other means, such as a compositional change in the mantle that mean it could more easily be melted. The researchers demonstrate in this paper that the volcanic activity requires a temperature anomaly, supporting the ‘hot spot’ model.

Additionally, the scientists hope that a better understanding of what happened 55 million years ago will also provide insight into the changes that occur to the atmosphere and biosphere during volcanic activity.

Professor White said: “At the time of the break-up of the North Atlantic 55 million years ago there was a very sudden increase in global temperatures: in fact the earth has never been as hot since then, although the global warming that humans are now causing is likely to take the earth back to the same high temperatures as existed for a short period then”

“The increases in global temperatures are thought to have been caused by a massive release of methane from under the seabed – methane is almost 25 times worse than carbon dioxide as a greenhouse gas. A better understanding of volcanism and the underlying hot spot will help us understand how such activity might have triggered the methane release and subsequent global warming.”

The researchers’ findings also have implications for oil exploration in the region. Large volumes of oil have already been discovered (and are being extracted) in the sediments under the seabed between the Shetland Islands and the Faroe Islands. If these same sediments extend westward towards the Faroe Islands, as geological models suggest they do, there may be a lot more oil to be found.

However, because the sediments had thick layers of lava flows (molten rock) poured over them at the time the north Atlantic broke open, conventional exploration techniques have not been able to see through the lavas because they reflect the seismic energy. The scientists succeeded in developing a method of seeing through these thick lava flows to the sediments and structures that lie beneath them.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>