Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Under the sea

31.03.2008
Scientists explore huge volume of molten rock now frozen into the crust under the ocean’s floor

For the first time scientists have mapped the layers of once molten rock that lie beneath the edges of the Atlantic Ocean and measure over eight miles thick in some locations.

The research, reported in this week’s edition of Nature, gives us a better understanding of what may have happened during the break up of continents to form new mid-ocean ridges. The same volcanic activity in the North Atlantic may also have caused the subsequent release of massive volumes of greenhouse gases which led to a spike in global temperatures 55 million years ago.

The scientists, led by Professor Robert White, FRS at the University of Cambridge, also developed a new method of seeing through the thick lava flows beneath the seafloor to the sediments and structures beneath. The technique is now being employed to further oil exploration of the area which was previously restricted by the inability to image through the lava flows.

When a continent breaks apart, as Greenland and Northwest Europe did 55 million years ago, it is sometimes accompanied by a massive outburst of volcanic activity due to a 'hot spot' in the mantle that lies beneath the 55 mile thick outer skin of the earth. When the North Atlantic broke open, it produced 1–2 million cubic miles (5–10 million cubic kilometres) of molten rock which extended across 300,000 square miles (one million square kilometres). Most of the volcanic rock is now underwater and buried by more recent sediments. However the edge of this huge volcanic region is visible on land in a few places including the Giant’s Causeway in Northern Ireland.

For the first time scientists mapped the huge quantities of molten rock in the North Atlantic. The rock had been injected into the crust of the earth at a depth of 5–10 miles (10–20 kilometres) beneath the surface along the line of the continental breakup 55 million years ago. Using seismic methods, they were able to map the layers of lava flows both near the surface and deep into the earth.

There is a considerable controversy at present as to whether the large scale volcanism was caused by abnormally hot mantle deep in the earth (a 'hot spot') or whether it was caused by some other means, such as a compositional change in the mantle that mean it could more easily be melted. The researchers demonstrate in this paper that the volcanic activity requires a temperature anomaly, supporting the ‘hot spot’ model.

Additionally, the scientists hope that a better understanding of what happened 55 million years ago will also provide insight into the changes that occur to the atmosphere and biosphere during volcanic activity.

Professor White said: “At the time of the break-up of the North Atlantic 55 million years ago there was a very sudden increase in global temperatures: in fact the earth has never been as hot since then, although the global warming that humans are now causing is likely to take the earth back to the same high temperatures as existed for a short period then”

“The increases in global temperatures are thought to have been caused by a massive release of methane from under the seabed – methane is almost 25 times worse than carbon dioxide as a greenhouse gas. A better understanding of volcanism and the underlying hot spot will help us understand how such activity might have triggered the methane release and subsequent global warming.”

The researchers’ findings also have implications for oil exploration in the region. Large volumes of oil have already been discovered (and are being extracted) in the sediments under the seabed between the Shetland Islands and the Faroe Islands. If these same sediments extend westward towards the Faroe Islands, as geological models suggest they do, there may be a lot more oil to be found.

However, because the sediments had thick layers of lava flows (molten rock) poured over them at the time the north Atlantic broke open, conventional exploration techniques have not been able to see through the lavas because they reflect the seismic energy. The scientists succeeded in developing a method of seeing through these thick lava flows to the sediments and structures that lie beneath them.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>