Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Under the sea

31.03.2008
Scientists explore huge volume of molten rock now frozen into the crust under the ocean’s floor

For the first time scientists have mapped the layers of once molten rock that lie beneath the edges of the Atlantic Ocean and measure over eight miles thick in some locations.

The research, reported in this week’s edition of Nature, gives us a better understanding of what may have happened during the break up of continents to form new mid-ocean ridges. The same volcanic activity in the North Atlantic may also have caused the subsequent release of massive volumes of greenhouse gases which led to a spike in global temperatures 55 million years ago.

The scientists, led by Professor Robert White, FRS at the University of Cambridge, also developed a new method of seeing through the thick lava flows beneath the seafloor to the sediments and structures beneath. The technique is now being employed to further oil exploration of the area which was previously restricted by the inability to image through the lava flows.

When a continent breaks apart, as Greenland and Northwest Europe did 55 million years ago, it is sometimes accompanied by a massive outburst of volcanic activity due to a 'hot spot' in the mantle that lies beneath the 55 mile thick outer skin of the earth. When the North Atlantic broke open, it produced 1–2 million cubic miles (5–10 million cubic kilometres) of molten rock which extended across 300,000 square miles (one million square kilometres). Most of the volcanic rock is now underwater and buried by more recent sediments. However the edge of this huge volcanic region is visible on land in a few places including the Giant’s Causeway in Northern Ireland.

For the first time scientists mapped the huge quantities of molten rock in the North Atlantic. The rock had been injected into the crust of the earth at a depth of 5–10 miles (10–20 kilometres) beneath the surface along the line of the continental breakup 55 million years ago. Using seismic methods, they were able to map the layers of lava flows both near the surface and deep into the earth.

There is a considerable controversy at present as to whether the large scale volcanism was caused by abnormally hot mantle deep in the earth (a 'hot spot') or whether it was caused by some other means, such as a compositional change in the mantle that mean it could more easily be melted. The researchers demonstrate in this paper that the volcanic activity requires a temperature anomaly, supporting the ‘hot spot’ model.

Additionally, the scientists hope that a better understanding of what happened 55 million years ago will also provide insight into the changes that occur to the atmosphere and biosphere during volcanic activity.

Professor White said: “At the time of the break-up of the North Atlantic 55 million years ago there was a very sudden increase in global temperatures: in fact the earth has never been as hot since then, although the global warming that humans are now causing is likely to take the earth back to the same high temperatures as existed for a short period then”

“The increases in global temperatures are thought to have been caused by a massive release of methane from under the seabed – methane is almost 25 times worse than carbon dioxide as a greenhouse gas. A better understanding of volcanism and the underlying hot spot will help us understand how such activity might have triggered the methane release and subsequent global warming.”

The researchers’ findings also have implications for oil exploration in the region. Large volumes of oil have already been discovered (and are being extracted) in the sediments under the seabed between the Shetland Islands and the Faroe Islands. If these same sediments extend westward towards the Faroe Islands, as geological models suggest they do, there may be a lot more oil to be found.

However, because the sediments had thick layers of lava flows (molten rock) poured over them at the time the north Atlantic broke open, conventional exploration techniques have not been able to see through the lavas because they reflect the seismic energy. The scientists succeeded in developing a method of seeing through these thick lava flows to the sediments and structures that lie beneath them.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>