Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel spots found on Jupiter

19.03.2008
Scientists have observed unexpected luminous spots on Jupiter caused by its moon Io.

Besides displaying the most spectacular volcanic activity in the solar system, Io causes auroras on its mother planet that are similar to the Northern Lights on Earth. The auroral emissions linked to the volcanic moon are called the Io footprint.

From previous studies, researchers had found the Io footprint to be a bright spot that is often followed by other auroral spots. Those spots are typically located downstream relative to a flow of charged particles around the giant planet. Now, a team of planetologists from Belgium and Germany have discovered that Io’s footprint can include a faint spot unexpectedly upstream of the main spot.

Each appearance of such a “leading spot” occurs in a distinctive pattern, the scientists say: When the main footprint is preceded by a leading spot in the northern or southern hemisphere of Jupiter, it is also followed by downstream spots in the opposite hemisphere.

“Previously, we only observed downstream spots, but only half of the configurations of Io in the Jovian magnetic field had been studied,” says Bertrand Bonfond of the University of Liège in Belgium, who is a member of the team that found the new type of spot. “Now we have the complete picture. The results are surprising because no theory predicted upstream spots.”

Like a rock in a stream, Io obstructs the flow of charged particles, or plasma, around Jupiter. As the moon disrupts the flow, it generates powerful plasma waves that blast electrons into Jupiter’s atmosphere, creating the auroral spots.

The finding of the leading spot puts all the previous models of the Io footprint into question, Bonfond says. He and his colleagues propose a new interpretation in which beams of electrons travel from one Jovian hemisphere to the other.

The new results were published online on 15 March in Geophysical Research Letters, a journal of the American Geophysical Union. The 16 March print edition of the journal features an image from the study on its cover.

For this latest Io-footprint analysis, Bonfond and his colleagues at Liège and at the University of Cologne in Germany used the Hubble Space Telescope to observe Jupiter in ultraviolet wavelengths.

New insights regarding Io-Jupiter interactions could apply to other situations in which an electrically conductive body—in this case, Io—orbits near a magnetised body, Bonfond says. Such configurations could be very common in the universe. For example, some of the recently discovered exoplanets that orbit stars other than the Sun are thought to be in such configurations with their parent stars.

Our Moon does not create a footprint on Earth because the Moon is not conductive and is also too far from the Earth, Bonfond notes.

In order to test their new theory of how leading and downstream spots form, Bonfond and his colleagues plan further observations of Io’s footprint after August 2008. That’s when repairs and improvements to the Hubble Space Telescope are scheduled to occur.

Peter Weiss | EurekAlert!
Further information:
http://www.agu.org
http://dx.doi.org/10.1029/2007GL032418

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>