Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite image reveals the floristic variation of the Amazonas region

18.03.2008
Regional variation in the flora of impenetrable rainforest can be assessed by means of satellite images.

In her dissertation, Principal Research Scientist Sirpa Thessler from MTT (Agrifood Research Finland) combined field observations made in the lowland rainforests of the Amazonas region with satellite image analysis and was also able to predict the floristic variation of unexplored areas.

By knowing the differences in species composition between areas, conservation and land use can be planned and carried out effeciently. When the floristic variaton of the region is known, new conservation areas can be planned effectively to complement the existing ones.

INDICATOR SPECIES WERE OBSERVED IN THE FIELD

In her dissertation, Ms Thessler examined the field observations made by the University of Turku Amazon research group in the rainforests of Ecuador, Peru and Costa Rica and combined these with Landsat satellite images taken from the same areas.

The species richness in the rainforests is immense, for which reason observations in the field are practically always limited in certain indicator species. They provide information about the environmental variation of the region, such as the nutrient content and humidity of soil, thus also describe the general patterns of flora .

In Thessler’s study, the indicator species included grass- and shrub-like Melastomataceae species and ferns in the understorey as well as tree and palm species in the canopy layer.

PIXEL VALUES REVEAL VARIATION

Field observations on hundreds of plant species were statistically summarised in three dimensions, in order to be able to present the satellite image based predictions of compositional variation in a single map. In addition various vegetation types were classified from the satellite images.

“I found a statistical association between the field observations and the pixel values of the satellite images, which led me to conclude that the images are indicative of the floristic patterns,” Ms Thessler states.

The researcher was equipped with field observations from a combined area of 47 square kilometres: based on these, she was able to predict the flora of an area of 4,100 square kilometres. Thessler points out that by satellite images we do not achieve a level of accuracy equal to field observations, but in rainforests with practically impenetrable forest they constitute one possible method.

“Surveying the flora of rainforests by means of field observations is difficult, time consuming and expensive. Even a rough estimate made with the aid of satellite images is better than nothing,” Ms Thessler sums up.

NEIGHBOURS PROVIDE RELIABLE INFORMATION

Sirpa Thessler’s dissertation also revealed that the “k Nearest Neighbour” method used for forest inventories in Finland and several other European countries also provides reliable information when it comes to tropical rainforests.

The method involves the examination of a single pixel in a satellite image and searching the pixels, named neighbours, that are closest in their spectral values and from which field observations are available. The letter “k” refers to the number of neighbours. Based on the known neighbours, the floristic class, for example, or another indicator of the species composition can be predicted for the pixels over the study area.

“The method seems quite promising. It produced good accuracies in predicting the floristic variation of a rainforest,” Thessler relates.

Ulla Jauhiainen | alfa
Further information:
http://www.mtt.fi

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>