Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Scientist Answers How Peruvian Meteorite Made It to Earth

13.03.2008
Brown University professor Peter Schultz’s study of the Peruvian meteorite has yielded some interesting conclusions that could upend the conventional wisdom about the size and type of meteorites that can strike Earth.

It made news around the world: On Sept. 15, 2007, an object hurtled through the sky and crashed into the Peruvian countryside. Scientists dispatched to the site near the village of Carancas found a gaping hole in the ground.

Peter Schultz, professor of geological sciences at Brown University and an expert in extraterrestrial impacts, went to Peru to learn more. For the first time, he will present findings from his travels at the 39th annual Lunar and Planetary Science Conference in League City, Texas, in a talk scheduled for 2 p.m. on March 11, 2008. Brown graduate student Robert “Scott” Harris collaborated on the research, joined by Jose Ishitsuka, a Peruvian astrophysicist, and Gonzalo Tancredi, an astronomer from Uruguay.

What Schultz and his team found is surprising. The object that slammed into a dry riverbed in Peru was a meteorite, and it left a 49-foot-wide crater. Soil ejected from the point of impact was found nearly four football fields away. When Schultz’s team analyzed the soil where the fireball hit, he found “planar deformation features,” or fractured lines in sand grains found in the ground. Along with evidence of debris strewn over a wide area, the shattered sand grains told Schultz that the meteorite had maintained a high rate of speed as it shot through the atmosphere. Scientists think it was traveling at roughly 15,000 miles per hour at the moment of impact.

“Normally with a small object like this, the atmosphere slows it down, and it becomes the equivalent of a bowling ball dropping into the ground,” Schultz said. “It would make a hole in the ground, like a pit, but not a crater. But this meteorite kept on going at a speed about 40 to 50 times faster than it should have been going.”

Scientists have determined the Carancas fireball was a stony meteorite – a fragile type long thought to be ripped into pieces as it enters the Earth’s atmosphere and then leaves little more than a whisper of its journey.

Yet the stony meteorite that struck Peru survived its passage mostly intact before impact.

“This just isn’t what we expected,” Schultz said. “It was to the point that many thought this was fake. It was completely inconsistent with our understanding how stony meteorites act.”

Schultz said that typically fragments from meteorites shoot off in all directions as the object speeds to Earth. But he believes that fragments from the Carancas meteorite may have stayed within the fast-moving fireball until impact. How that happened, Schultz thinks, is due to the meteorite’s high speed. At that velocity, the fragments could not escape past the “shock-wave” barrier accompanying the meteorite and instead “reconstituted themselves into another shape,” he said.

That new shape may have made the meteorite more aerodynamic – imagine a football passing through air versus a cinderblock – meaning it encountered less friction as it sped toward Earth, hitting the surface as one large chunk.

“It became very streamlined and so it penetrated the Earth’s atmosphere more efficiently,” Schultz said.

Schultz’s theory could upend the conventional wisdom that all small, stony meteorites disintegrate before striking Earth. If correct, it could change the thinking about the size and type of extraterrestrial objects that have bombarded the Earth for eons and could strike our planet next.

“You just wonder how many other lakes and ponds were created by a stony meteorite, but we just don’t know about them because when these things hit the surface they just completely pulverize and then they weather,” said Schultz, director of the Northeast Planetary Data Center and the NASA/Rhode Island University Space Grant Consortium.

Schultz’s research could have implications for Mars, where craters have been discovered in recent missions. “They could have come from anything,” he said. “It would be interesting to study these small craters and see what produced them. Perhaps they also will defy our understanding.”

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>