Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Scientist Answers How Peruvian Meteorite Made It to Earth

13.03.2008
Brown University professor Peter Schultz’s study of the Peruvian meteorite has yielded some interesting conclusions that could upend the conventional wisdom about the size and type of meteorites that can strike Earth.

It made news around the world: On Sept. 15, 2007, an object hurtled through the sky and crashed into the Peruvian countryside. Scientists dispatched to the site near the village of Carancas found a gaping hole in the ground.

Peter Schultz, professor of geological sciences at Brown University and an expert in extraterrestrial impacts, went to Peru to learn more. For the first time, he will present findings from his travels at the 39th annual Lunar and Planetary Science Conference in League City, Texas, in a talk scheduled for 2 p.m. on March 11, 2008. Brown graduate student Robert “Scott” Harris collaborated on the research, joined by Jose Ishitsuka, a Peruvian astrophysicist, and Gonzalo Tancredi, an astronomer from Uruguay.

What Schultz and his team found is surprising. The object that slammed into a dry riverbed in Peru was a meteorite, and it left a 49-foot-wide crater. Soil ejected from the point of impact was found nearly four football fields away. When Schultz’s team analyzed the soil where the fireball hit, he found “planar deformation features,” or fractured lines in sand grains found in the ground. Along with evidence of debris strewn over a wide area, the shattered sand grains told Schultz that the meteorite had maintained a high rate of speed as it shot through the atmosphere. Scientists think it was traveling at roughly 15,000 miles per hour at the moment of impact.

“Normally with a small object like this, the atmosphere slows it down, and it becomes the equivalent of a bowling ball dropping into the ground,” Schultz said. “It would make a hole in the ground, like a pit, but not a crater. But this meteorite kept on going at a speed about 40 to 50 times faster than it should have been going.”

Scientists have determined the Carancas fireball was a stony meteorite – a fragile type long thought to be ripped into pieces as it enters the Earth’s atmosphere and then leaves little more than a whisper of its journey.

Yet the stony meteorite that struck Peru survived its passage mostly intact before impact.

“This just isn’t what we expected,” Schultz said. “It was to the point that many thought this was fake. It was completely inconsistent with our understanding how stony meteorites act.”

Schultz said that typically fragments from meteorites shoot off in all directions as the object speeds to Earth. But he believes that fragments from the Carancas meteorite may have stayed within the fast-moving fireball until impact. How that happened, Schultz thinks, is due to the meteorite’s high speed. At that velocity, the fragments could not escape past the “shock-wave” barrier accompanying the meteorite and instead “reconstituted themselves into another shape,” he said.

That new shape may have made the meteorite more aerodynamic – imagine a football passing through air versus a cinderblock – meaning it encountered less friction as it sped toward Earth, hitting the surface as one large chunk.

“It became very streamlined and so it penetrated the Earth’s atmosphere more efficiently,” Schultz said.

Schultz’s theory could upend the conventional wisdom that all small, stony meteorites disintegrate before striking Earth. If correct, it could change the thinking about the size and type of extraterrestrial objects that have bombarded the Earth for eons and could strike our planet next.

“You just wonder how many other lakes and ponds were created by a stony meteorite, but we just don’t know about them because when these things hit the surface they just completely pulverize and then they weather,” said Schultz, director of the Northeast Planetary Data Center and the NASA/Rhode Island University Space Grant Consortium.

Schultz’s research could have implications for Mars, where craters have been discovered in recent missions. “They could have come from anything,” he said. “It would be interesting to study these small craters and see what produced them. Perhaps they also will defy our understanding.”

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>