Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modern physics is critical to global warming research

13.03.2008
Science has come a long way with predicting climate. Increasingly sophisticated models and instruments can zero in on a specific storm formation or make detailed weather forecasts – all useful to our daily lives.

But to understand global climate change, scientists need more than just a one-day forecast. They need a deeper understanding of the complex and interrelated forces that shape climate.

This is where modern physics can help, argues Brad Marston, professor of physics at Brown University. Marston is working on sets of equations that can be used to more accurately explain climate patterns. Marston will explain his research as part of a panel discussion titled “The Physics of Climate and Climate Change,” scheduled for 2:30 p.m. on March 11, 2008, at the American Physical Society’s meeting in New Orleans. Marston will also take part in a 1 p.m. press conference prior to the presentation.

“Climate is a statement about the statistics of weather, not the day-to-day or minute-by-minute fluctuations,” Marston said. “That’s really the driving concept. We know we can’t predict the weather more than a couple of weeks out. But we can turn that to our advantage, by using statistical physics to look directly at the climate itself.”

Take the drying of Lake Mead in the western United States. Scientists think the lake, which straddles Nevada and Arizona, may already be getting less rain due to shifting weather patterns caused by a warming world. Computer models can follow those rainfall patterns and forecast the likely effects on the lake. But current models obscure the larger mechanisms – such as shifting storm tracks – that can drive changes in rainfall.

“If we’re just mesmerized by the details of the model,” Marston said, “we could be missing the big picture of why it’s happening.”

Marston’s statistical approach can be used to help crack the code of complicated, dynamic atmospheric processes poorly understood through models, such as convection, cloud formation, and macroturbulence, which refers to the currents, swirls and eddies in the global atmosphere. More fundamentally, Marston said this approach can help to deepen understanding of what is happening in today’s climate and what those changes can mean for climate in the future.

“We’re trying to make the models more robust, to give better insights into what is actually going on,” he said.

Marston’s research, on which he teamed with former Brown undergraduate Emily Conover and Tapio Schneider of the California Institute of Technology, was selected last fall for publication in the Journal of the Atmospheric Sciences. Marston’s ultimate research goal is to create a more realistic rendering of the global atmospheric system that can be used to understand the atmosphere of the past and to gauge future changes.

“We’re improving the statistical methods themselves, so that they’re more accurate,” Marston said. “At the same time we are applying the methods to progressively more complete models of the Earth’s atmosphere.”

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>