Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorites are rich in the building blocks of life, claims new research

13.03.2008
Amino acids that are the building blocks of life have been found in their highest ever concentration in two ancient meteorites which crashed to Earth millions of years ago, scientists claim today.

Scientists believe their research, published online in the journal Meteoritics and Planetary Science, provides fresh insights into the origins of life on Earth.

Amino acids form the basis of proteins and enzymes, which are the building blocks of all biological life. They have been found in ancient carbon rich meteorites, which are fragments of asteroids formed shortly after the birth of the solar system.

The research team believes that the presence of amino acids in these meteorites provides clear evidence that the early solar system was richer in life’s raw materials than previously thought and that these materials may have helped to kick-start life on this planet.

Lead researcher, Dr Zita Martins, from Imperial College London’s Department of Earth Science and Engineering, explains:

“We know that approximately 3.8 to 4.5 billion years ago the Earth underwent heavy bombardment from meteorites which brought molecules to our planet, just before life emerged on Earth. However, there is a gap in knowledge about how life came into being. Our work has shown that it may have been meteoritic amino acids and other biologically useful compounds that spurred life into existence.”

The team found amino acids in two ancient meteorites called CR chondrites, which were found in Antarctica in the 1990s. By analysing the carbon content of these meteoritic amino acids, the scientists were able to determine that, unlike Earth based amino acids which prefer a lighter variety of carbon, their samples were made from a heavier carbon which could only have been formed in space.

Dr Martins says her work provides new insights into the chemistry of the early solar system and the resources available for early life.

“Our increasing understanding of the materials available for the first living systems in the solar system suggests that we are all products of cosmic chemistry,” said Dr Martins.

Dr Zita Martins conducted her research whilst based at the Leiden University, Netherlands, in association with the Carnegie Institution of Washington and NASA JPL in the US.

Colin Smith | alfa
Further information:
http://arxiv.org/abs/0803.0743v2
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>