Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorites are rich in the building blocks of life, claims new research

13.03.2008
Amino acids that are the building blocks of life have been found in their highest ever concentration in two ancient meteorites which crashed to Earth millions of years ago, scientists claim today.

Scientists believe their research, published online in the journal Meteoritics and Planetary Science, provides fresh insights into the origins of life on Earth.

Amino acids form the basis of proteins and enzymes, which are the building blocks of all biological life. They have been found in ancient carbon rich meteorites, which are fragments of asteroids formed shortly after the birth of the solar system.

The research team believes that the presence of amino acids in these meteorites provides clear evidence that the early solar system was richer in life’s raw materials than previously thought and that these materials may have helped to kick-start life on this planet.

Lead researcher, Dr Zita Martins, from Imperial College London’s Department of Earth Science and Engineering, explains:

“We know that approximately 3.8 to 4.5 billion years ago the Earth underwent heavy bombardment from meteorites which brought molecules to our planet, just before life emerged on Earth. However, there is a gap in knowledge about how life came into being. Our work has shown that it may have been meteoritic amino acids and other biologically useful compounds that spurred life into existence.”

The team found amino acids in two ancient meteorites called CR chondrites, which were found in Antarctica in the 1990s. By analysing the carbon content of these meteoritic amino acids, the scientists were able to determine that, unlike Earth based amino acids which prefer a lighter variety of carbon, their samples were made from a heavier carbon which could only have been formed in space.

Dr Martins says her work provides new insights into the chemistry of the early solar system and the resources available for early life.

“Our increasing understanding of the materials available for the first living systems in the solar system suggests that we are all products of cosmic chemistry,” said Dr Martins.

Dr Zita Martins conducted her research whilst based at the Leiden University, Netherlands, in association with the Carnegie Institution of Washington and NASA JPL in the US.

Colin Smith | alfa
Further information:
http://arxiv.org/abs/0803.0743v2
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>