Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Dust in Ice Cores Shows Volcanic Eruptions Interfere with the Effect of Sunspots on Global Climate

12.06.2002


University at Buffalo scientists working with ice cores have solved a mystery surrounding sunspots and their effect on climate that has puzzled scientists since they began studying the phenomenon.



The research, published in a paper in the May 15 issue of Geophysical Research Letters, provides striking evidence that sunspots -- blemishes on the sun’s surface indicating strong solar activity -- do influence global climate change, but that explosive volcanic eruptions on Earth can completely reverse those influences.

It is the first time that volcanic eruptions have been identified as the atmospheric event responsible for the sudden and baffling reversals that scientists have seen in correlations between sunspots and climate.


"Knowing the mechanisms behind past climate changes is critical to our understanding of possible future changes in climate, such as global warming, and for assessing which of these changes are due to human activities and which arise naturally," explained co-author Michael Stolz, doctoral candidate in the Department of Physics in UB’s College of Arts and Sciences.

According to the UB researchers, their work reveals two different mechanisms by which climate is affected by cosmic rays, charged particles that stream toward Earth and which are strongly influenced by solar activity.

"For a long time people have tried to find out whether, for example, periods of maximum sunspots will influence the climate to behave in a certain way," said Michael Ram, Ph.D., professor of physics at UB and co-author on the paper.

"Whenever scientists thought they had discovered something, say, they were seeing a positive correlation between temperature and sunspots, it would continue like that for several years and, all of a sudden, there would be a reversal and, instead, they would start to see a negative correlation," said Ram.

"There seemed to be no consistent relationship between what the sun was doing and what the climate was doing," he said.

To truly confirm any connection between sunspots and climate, a consistent correlation would have to be observed over a long period, covering many solar cycles, Ram explained.

That’s what he and his graduate students and co-authors have done with their study of ice cores, long cylinders of ancient ice from Greenland that serve as a frozen archive in that they record climate details from thousands of years ago.

"This is the beauty of working with ice cores," said Ram. "They go back 100,000 years, so we can study how dust concentrations vary along the ice core, reflecting past-atmospheric dust concentrations."

Plain old dust, Ram added, holds the key in these experiments because it reflects how dry conditions were in a particular year.

"Dust is a very sensitive parameter of climate," he explained.

Drawing on climate data derived from ice cores obtained through the Greenland Ice Sheet Project 2, (GISP2), the scientists used laser-light scattering techniques to determine the level of dust in the atmosphere for roughly the past 300 years, which is how far back sunspot data have been recorded.

The scientists started out with the assumption that a low level of cosmic rays on Earth resulting from high sunspot activity would lead to less cloud cover and less rain, with resulting high dust levels.

"This was true for the first three or four solar cycles we studied, from about 1930 to 1962, but then the correlation reversed itself, demonstrating that the mechanism couldn’t be what we thought," said Ram.

It turned out that during those 32 years of positive sun/dust correlation, there was relatively little explosive volcanic activity worldwide. The researchers found that the same conditions existed between 1860 and 1882. Each of these relatively "quiet" periods came to an end with increased volcanic activity.

For example, in 1883, the Indonesian volcano Krakatau erupted in one of the deadliest volcanic disasters, killing 36,000 people. At exactly the same time, the data started to exhibit low dust concentration whenever there was high sunspot activity, a correlation that violated the scientists’ original assumptions.

"By carefully studying the timing of other volcanic eruptions, we found that they coincided with all of the correlation reversals between sunspots and climate," said Ram.

A chart in the paper shows how six major volcanic eruptions between 1800 and 1962 occurred during precisely the same years when there were reversals in the correlation between sunspot activity and climate.

That revelation provided a further insight into how sunspots affect climate.

"All energy comes from the sun, but the change in visible radiation from the sun during any one solar cycle is less than one half of a percent," explained Stolz. "Scientists have said it’s impossible that so small a change could influence any signal in the climate. But here we have evidence to show that it’s not just radiation energy from the sun that is affecting climate, it’s the solar-modulated cosmic rays that have a strong influence because of their impact on cloud cover."

With fewer clouds, and therefore less rain, the scientists reasoned, maximum sunspots should cause levels of atmospheric dust to rise.

"That is true sometimes," said John Donarummo, Jr., UB doctoral candidate in the UB Department of Geology and a co-author on the paper.

But, the researchers discovered, during periods of high volcanic activity, high sunspot activity also results in high levels of atmospheric dust.

According to Donarummo, it long has been known that volcanoes add more dust and more sulfates to the atmosphere.

The UB team discovered that these additional sulfates cause cosmic rays to have a more pronounced effect on Earth by spurring the formation of small droplets in the atmosphere that, in turn, cause the formation of a type of cloud that does not produce rain.

"During these times of high volcanic activity, the sunspot/climate correlation reverses and dust levels rise, even in the absence of high sunspots," explained Stolz.

The work was funded in part by National Science Foundation.

Ellen Goldbaum | EurekAlert

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>