Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fossilized Giant Rhinocerotoid Bone Calls into Question the Isolation of Anatolia, 25 Million Years Ago

10.03.2008
Contrary to generally accepted belief, Anatolia1 was not geographically isolated 25 million years ago (during the Oligocene epoch): this has just been demonstrated by researchers from the Laboratoire des Mécanismes et Transferts en Géologie (LMTG) (CNRS/ University of Toulouse 3/IRD) and the Paléobiodiversité et paléoenvironnements laboratory (CNRS/Muséum national d’histoire naturelle/University of Paris 6).

These results were obtained thanks to analyses of the first fossilized giant rhinocerotoid bone discovered in 20022 in an Anatolian deposit during a Franco-Turkish paleontology expedition funded by the ECLIPSE INSU-CNRS program. The presence of this bone in Anatolia, with the remains of associated fauna, are indicative of animal migrations between Europe and Asia. The results, published online in the March 2008 issue of the Zoological Journal of the Linnean Society, thus call into question the isolation of Anatolia, which until now was considered to have been an archipelago.

This is the first time that a fossilized giant rhinocerotoid bone dating from the Oligocene epoch (a period corresponding to intense tectonic movements around the Mediterranean Sea) has been found in Anatolia. Discovered in 2002 during a Franco-Turkish paleontology expedition in the region of ÇankiriÇorum (Central Anatolia, Turkey), the bone fragment3 from the forearm (radius) described by the scientists measures 1.20 meters long and probably belonged to a very large male (about 5 meters to the shoulder), attributed to the Paraceratherium genus. These herbivorous animals, also called baluchitheres or indricotheres, are considered to have been the largest terrestrial mammals that ever existed, equal in size to the largest mammoths (with a height to the shoulder estimated to be 5 meters or more, and a body weight of 15 to 20 tons).

As well as this specimen of Paraceratherium, known to have existed notably in Pakistan, China, Mongolia and Kazakhstan, the remains of ruminants and rodents were also found in the deposit. They enabled dating of the specimen to about 25 million years, and also exhibited close affinities with contemporary fauna in Asia and/or Europe. This observation is particularly surprising in that Anatolia was until now considered to have been an archipelago at that time, separated from both Europe and Asia by what is referred to as the Paratethys Sea; the Black, Caspian and Aral seas are today the only remaining vestiges of this body of water. The discovery thus proves the existence of terrestrial communication and close links at that period between Europe (including France) and Asia (China, Mongolia, Pakistan). Thus, during the Oligocene epoch, Anatolia was not isolated by the sea and was at least an isthmus: animals could therefore cross on dry land from continental Asia to Anatolia.

On the other hand, this discovery also tends to confirm that there was indeed a separation from Africa, as to date no species of African affinity has been found in the Oligocene soils of Anatolia.

1 A peninsula situated at the western tip of Asia, it now corresponds to the Asiatic part of Turkey (96% of the total Turkish landmass, the remaining 4% being situated in Thrace).

2 In the region of Çankiri-Çorum (Central Anatolia, Turkey).

3 This is similar in size to the largest radius from a baluchithere known to date, a specimen discovered in Mongolia during the 1930s in strata dating from the same period (approximately 25 million years).

Davina Quarterman | Wiley-Blackwell
Further information:
http://www.blackwell-synergy.com/loi/zoj?cookieSet=1

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>