Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key component of Earth's crust formed from moving molten rock

07.03.2008
Earth scientists are in the business of backing into history -- extrapolating what happened millions of years ago based on what they can observe now. Using this method, a team of Cornell researchers has created a mathematical computer model of the formation of granulite, a fine-grained metamorphic rock, in the Earth's crust.

By studying what were once pockets of hot, melted rock 13 kilometers (about 8 miles) deep in the Earth's crust 55 million years ago and calculating the period of cooling, the scientists were able to explain how granulite is formed as the molten rock migrates up through the crust.

The research is published in the March issue of the journal Nature by Gabriela V. Depine, a fourth-year graduate student in earth and atmospheric sciences (EAS); Christopher L. Andronicos, an EAS associate professor; and Jason Phipps-Morgan, professor of EAS. The research is funded by Cornell and by the National Science Foundation's Continental Dynamics program.

Granulite, composed mainly of feldspars, has no residual water and is called metamorphic because it is formed in temperatures of greater than 800 degrees Celsius (1,472 degrees Fahrenheit). It is a major component of the continental crust.

Working in British Columbia in summer 2006, the researchers puzzled over the formation of granulite, which, unlike other rocks, forms under a wide range of depths but under a narrow range of temperatures. In many places on Earth, temperature is assumed to vary linearly with depth -- that is, the deeper the crust, the hotter the rock.

The researchers decided to mathematically recreate the formation of granulite at various depths, to see if they could come up a method that mirrors the natural formation of the rock.

They did so by looking at plutons, or pockets of hot, melted rock that were once as much as 13 kilometers below the Earth's surface but are now exposed. (Plutons that rise to the surface and erupt can become volcanoes.) The researchers found that as melted rock deep in the Earth becomes buoyant and migrates up through the crust, granulite can form at various depths but at similar temperatures.

Looking at the melting process is like looking at the process of the formation of continents, Andronicos explained.

"If you look over geologic time, not all the rocks are the same age, and the reason for that is they got formed at different times," he said. "So if you can get a handle on the temperature, which is what controls melting and metamorphism, then you have a better idea of some of the fundamental controls that lead to rock formation, and therefore continents."

The computer model, he said, will hopefully provide further insight into the energy balance of the Earth during crustal formation.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>