Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny pieces of 'deep time' brought to the surface

05.03.2008
New discovery of 'old growth' crystals provides new record of planetary evolution

Three-billion-year-old zircon microcrystals found in northern Ontario are proving to be a new record of the processes that form continents and their natural resources, including gold and diamonds.

The discovery was made recently by an international research team led by Earth Sciences professor Desmond Moser at The University of Western Ontario. Measuring no more than the width of a human hair, the 200-million-year growth span of these ancient microcrystals is longer than any previously discovered.

The findings provide a new record of planetary evolution and contradict previous experimental predictions that the crystals would change when exposed to heat and pressure upon burial in the deep Earth. Instead, they have an incredible ‘memory’ of their time below volcanoes, of transport to the shores of ancient oceans and of their burial beneath now-extinct mountain ranges billions of years before the time of dinosaurs. “This research shows that these crystals are incredibly resistant to change and proves for the first time that the growth zones we see inside them contain an accurate record of their movements through and around the Earth,” says Moser.

Containing trace amounts of uranium, the crystals continued to grow over hundreds of millions of years, even as the planet evolved and underwent a series of dramatic shifts. “The oldest pieces of our planet are crystals of zircon,” says Moser. “These crystals are the memory cells of the Earth and with our study we can now say they are an accurate recorder of planetary evolution over eons – in the same way that rings on an old growth tree can record changes in a forest over hundreds of years.”

Keeping with the tree analogy, Moser found that these crystals had roughly circular growth zones that he was able to date and analyze with specialized ion probes. These zones track the formation of the early North American continent, from its beginning as a series of volcanic island chains, to its eventual fusion into a large, thick continental plate that became the core of North America.

As the crystals formed around the same time as gold, diamond and other metal deposits, this research provides not only insight into the formation of Earth itself, it can also help answer the question, “Did plate tectonics operate early in our planet’s history or did some other process create the large metal and diamond deposits of the Canadian Shield?” “It also provides a new tool for dating the appearance of oceans on other rocky planets like Mars, where Rover results indicate zircon crystals should exist” says Moser.

Over the course of millions of years, the crystals have been pushed back to the surface from depths of 30 kilometres by a series of pushes on the edges of the original continent, which give us globally-rare exposures in northern Ontario. “It’s not every day you find a piece of the deep Earth that you can walk around on and explore,” Moser says.

Douglas Keddy | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>