Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large source of nitrate, a potential water contaminant, found in near-surface desert soils

03.03.2008
Disruption of desert soil surface could result in wind erosion of nitrate-rich soil, UCR-led study warns

A UC Riverside-led study in the Mojave Desert, Calif., has found that soils under “desert pavement” have an unusually high concentration of nitrate, a type of salt, close to the surface. Vulnerable to erosion by rain and wind if the desert pavement is disrupted, this vast source of nitrate could contaminate surface and groundwaters, posing an environmental risk.

Study results appear in the March issue of Geology.

Desert pavement is a naturally occurring, single layer of closely fitted rock fragments. A common land surface feature in arid regions, it has been estimated to cover nearly half of North America’s desert landscapes.

Nitrate, a water soluble nitrogen compound, is a nutrient essential to life. It is also, however, a contaminant. When present in excess in aquatic systems, it results in algal blooms. High levels of nitrate in drinking water have been associated with serious health issues, including methaemoglobinaemia (blue baby disease, marked by a reduction in the oxygen-carrying capacity of blood), miscarriages and non-Hodgkin’s lymphoma.

Salts, including nitrate, are formed in deserts as water evaporates on dry lake beds. These salts then get blown on to the desert pavement by winds. Other contributors of nitrate to desert pavement soils are atmospheric deposition (the gradual deposition of nutrient-rich particulate matter from the air), and soil bacteria, which convert atmospheric nitrogen into nitrate that is usable by plants and other organisms.

Ordinarily, in moist soils, plants and microbes readily take up nitrate, and water flushing through the soils leaches the soils of excess nitrate.

But desert pavement, formed over thousands of years, impedes the infiltration of water in desert soil, restricting plant development and resulting in desert pavement soils becoming nitrate-rich (and saltier) with time.

“After water, nitrogen is the most limiting factor in deserts, affecting net productivity in desert ecosystems,” said Robert Graham, a professor of soil mineralogy in the Department of Environmental Sciences and the lead author of the research paper. “The nitrate stored in soils under desert pavement is a previously unrecognized vast pool of nitrogen that is particularly susceptible to climate change and human disturbance. Moister climates, increased irrigation, wastewater disposal, or flooding may transport high nitrate levels to groundwater or surface waters, which is detrimental to water quality.”

In their study, Graham and his colleagues sampled three widely separated locations with well-developed desert pavement in the Mojave Desert. The locations were selected to represent a variety of landforms commonly found in the desert. The researchers found that the nitrate they observed in association with desert pavement was consistent across the landforms.

“Deserts account for about one-third of Earth’s land area,” Graham said. “If our findings in the Mojave can be extrapolated to deserts worldwide, the amount of nitrate – and nitrogen – stored in near-surface soils of warm deserts would need to be re-estimated.”

Graham and his team of researchers found that nitrate concentration in soils under desert pavement in the Mojave reached a maximum (up to 12,750 kilograms per hectare) within 0.1 to 0.6 meter depth. In contrast, at each location they studied, the soils without desert pavement had relatively low nitrate concentrations (80 to 1500 kilograms per hectare) throughout the upper meter. “In these nonpavement locations, water was able to infiltrate the soil and transport the nitrate to deeper within the soil,” Graham explained.

The researchers note in the paper that desert land use – road construction, off-road vehicle use, and military training – often disrupts fragile land surfaces, increasing surface erosion by rain and wind. According to them, nitrogen-laden dust transported by wind from disturbed desert pavement soils may impact distant nitrogen-limited ecosystems, such as alpine lakes.

Furthermore, the researchers note that increased soil moisture resulting from climate change increases the potential for “denitrification” – a naturally-occurring process in soil, where bacteria break down nitrates to return nitrogen gas to the atmosphere. “Denitrification also produces nitrous oxide, a major greenhouse gas,” Graham said.

Next in their research, Graham and his colleagues will examine the spatial distribution of desert pavement throughout the Mojave Desert to explore how different levels of nitrate are associated with different kinds of desert pavement. Together with UCR’s David Parker, a professor of soil chemistry, they will look in the desert also for perchlorate, which may be associated with nitrate.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>