Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seafloor cores show tight bond between dust and past climates

03.03.2008
Researchers hope to shed light on proposed manmade climate 'repairs'

Each year, long-distance winds drop up to 900 million tons of dust from deserts and other parts of the land into the oceans. Scientists suspect this phenomenon connects to global climate—but exactly how, remains a question.

Now a big piece of the puzzle has fallen into place, with a study showing that the amount of dust entering the equatorial Pacific peaks sharply during repeated ice ages, then declines when climate warms. The researchers say it cements the theory that atmospheric moisture, and thus dust, move in close step with temperature on a global scale; the finding may in turn help inform current ideas to seed oceans with iron-rich dust in order to mitigate global warming. The study appears in the Feb. 28 edition of Science Express, the advance online edition of the leading journal Science.

In the past decade, scientists have documented similar dust peaks in polar ice cores, and in sediments from the Atlantic and Indian oceans, but records from Pacific were contradictory. Now that all the records have been shown to coincide, “it suggests that the whole world hydrologic cycle varies in unison, on a pretty rapid time scale,” said Gisela Winckler, a geochemist at Columbia University’s Lamont-Doherty Earth Observatory and lead author of the paper.

“It gives us the information from where it matters—where people live, and where the real engine of climate probably lies.” Changes in the atmosphere over the Pacific, and the tropics in general, are thought to affect huge areas of the world.

The researchers studied cores of seafloor sediment representing 500,000 years of deposition, spanning about 6,000 miles of the Pacific equator, from near Papua New Guinea to near Ecuador’s Galápagos Islands—nearly a quarter of the globe’s girth. In each, they found the same thing: at the height of each of five known ice ages, accumulation of the isotope thorium 232, a tracer for land dust, shot up 2.5 times over the level of warmer “interglacial” times.

The peaks appear about every 100,000 years, with the last one at 20,000 years ago—culmination of the last glacial age. Through other isotopes, the scientists traced the dust on the western side to Asia, and that on the eastern side to South America. The reasons for the lockstep peaks are probably complex, but in general scientists say that colder air holds less moisture than warmer air, and that cold periods tend to be windier; this means both dustier land, and more dust getting blown away.

The dust probably helped make climate even colder for a while, and this has implications for the current day, said Robert F. Anderson, head of Lamont-Doherty’s geochemistry division and a coauthor. Many types of dust transported at high altitudes tend to reflect sunlight, thus lowering the energy reaching earth, said Anderson. And, when it settles into the ocean, there could be an intriguing further effect. Rich in the plant nutrient iron, the dust could have fertilized near-surface plankton on a massive scale.

Like other plants, plankton uses the greenhouse gas carbon dioxide for photosynthesis; thus, theoretically, fertilization could have caused the ocean to take larger amounts of CO2 from the air, and entomb it in the ocean. Lowering of atmospheric CO2 in turn would reduce the air’s capacity to hold heat—the opposite of what is currently happening, as the globe warms due to elevated CO2 levels from burning of fossil fuels and other human activities.

Lately, a growing number of scientists have been advocating research to see if massive, manmade iron fertilization of the oceans might induce such blooms, and thus mitigate warming. A dozen early experiments in different regions have shown that plankton growth increases when iron is artificially added, but scientists have yet to show that this could lock significant amounts of CO2 into the ocean; carbon from the plants would have to sink to the bottom for this to happen. “The new data gives us a natural experiment to see what might have happened in the past,” said Winckler. The researchers’ next step will be to analyze their cores for signs of such sunken carbon during the ice ages; they hope to do this within a year or two.

Anderson and Winckler caution that the idea of iron fertilization remains deeply complex and controversial. “Assessing the past response to natural variability of iron will enable scientists to develop more quantitative predictions about the possible efficacy of adding it ourselves in the future,” said Winckler.

Kevin Krajick | EurekAlert!
Further information:
http://www.ei.columbia.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>