Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voyage to Southern Ocean aims to study air-sea fluxes of greenhouse gases

28.02.2008
High winds and big waves are part of the data -- and the challenge

Scientists will embark this week from Punta Arenas, Chile, on the tip of South America, to spend 42 days amid the high winds and waves of the Southern Ocean. Here they hope to make groundbreaking measurements to explain how huge fluxes of climate-affecting gases move between atmosphere and sea, and vice-versa.

The cruise, which departs Feb. 28, should provide important information on how the greenhouse gas carbon dioxide moves between the ocean and atmosphere, said the cruise’s chief scientist, David Ho of Columbia University’s Lamont-Doherty Earth Observatory. Comprising 30 percent of global seas, “the Southern Ocean is a source of great uncertainty,” he said. “So it’s potentially important to our understanding of the global system.”

Humans put about 6 billion metric tons of CO2 into the air each year, mainly by fossil-fuel burning and deforestation. About a third is thought to be absorbed by oceans, and a third by plants or other components of land. The rest stays in the air—much of the reason why atmospheric CO2 is now building and climate is warming. However, there are huge uncertainties in the calculations—made so far mostly through indirect means--and fluxes seem highly variable from year to year, with some parts of the oceans habitually giving up CO2 while others absorb it. (The Southern Ocean usually absorbs it.) "Understanding how atmospheric carbon dioxide reacts with these cold surface waters is important for determining how the ocean uptake of carbon dioxide will respond to future climate change,” said Christopher Sabine, an oceanographer at the U.S. National Oceanic and Atmospheric Administration (NOAA). NOAA, NASA and the National Science Foundation are cosponsoring the cruise.

About 30 scientists from over a dozen institutions will traverse an area above Antarctica more than 1,000 miles east of Punta Arenas, aboard the 274-foot NOAA ship Ronald Brown. Here high, freezing winds unimpeded by landmasses roar much of the time, and waves can routinely top 30 feet. “The conditions are a little grim, but it’s ideal for study,” said Ho. He said that higher wind speeds correlate with faster exchange of gases, but there have been few studies aimed at directly measuring these exchanges under real-world conditions. The scientists say that wind speed itself probably does not drive gas exchange; the drivers are hard-to-observe phenomena driven by the wind, including turbulence and bubbles created by cresting waves. Another factor is the amount of phytoplankton taking CO2 from the water, which is usually measured by color. To figure out what is going on, the crew will dangle arrays of complicated instruments just above the water surface, and in the water column. “That will be a challenge, since the bow will be plunging off those big waves,” noted Sabine.

“NASA’s ongoing effort to understand the global carbon cycle will benefit from the data this cruise will produce,” said Paula Bontempi, manager of NASA’s ocean biology and biogeochemistry research program. "NASA's global satellite observations of ocean color will be improved, as we validate what our space-based sensors see with direct measurements taken at sea."

Kevin Krajick | EurekAlert!
Further information:
http://www.ei.columbia.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

Innovative autonomous system for identifying schools of fish

20.06.2018 | Information Technology

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>