Rock studies help crack questions of glacier thinning in West Antarctica

Scientists from British Antarctic Survey (BAS), Durham University and Germany’s Alfred Wegener Institute for Polar and Marine Research (AWI) collected boulders deposited by three glaciers in the Amundsen Sea Embayment – a region currently the focus of intense international scientific attention because it is changing faster than anywhere else on the WAIS and it has the potential to raise sea-level by around 1.5 metres.

Analysis of the boulders has enabled the scientists to start constructing a long-term picture of glacier behaviour in the region. An urgent task is to put recent ice sheet changes into a historical context, and determine if these are part of a natural retreat since the end of the last glacial period (about 20 thousands years ago), or if they are a result of recent human-induced climate change.

Lead author Dr Joanne Johnson of BAS says,
“Until now we didn’t know much about the long-term history of this part of the West Antarctic Ice Sheet because the region is incredibly remote and inaccessible. Our geological findings add a new piece to the jigsaw and will be used for improving computer models – the most important tools we have for predicting future change.”

Initial results show that Pine Island Glacier has ‘thinned’ by around 4 centimetres per year over the past 5,000 years, while Smith and Pope Glaciers thinned by just over 2 cm per year during the past 14,500 years. These rates are more than 20 times slower than recent changes: satellite, airborne and ground based observations made since the 1990s show that Pine Island Glacier has thinned by around 1.6 metres per year in recent years.

The scientists reached their conclusions by investigating how long the boulders have been exposed to cosmic radiation rather than being shielded by ice or sediment.

Co-author Dr Mike Bentley from the University of Durham said,

“When rocks are left high and dry by thinning glaciers they are exposed to high energy cosmic rays which bombard the rock. This creates atoms of particular elements that we can extract and measure in the laboratory – the longer they have been exposed the greater the build-up of these elements. The discovery that we can place a fix on when rocks were left behind by the ice has revolutionised our understanding of how the Antarctic ice sheet has behaved in the past. “

Media Contact

Linda Capper alfa

More Information:

http://www.antarctica.ac.uk

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors