Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rock studies help crack questions of glacier thinning in West Antarctica

28.02.2008
Boulders the size footballs could help scientists predict the West Antarctic Ice Sheet’s (WAIS) contribution to sea-level rise according to new research published this week in the journal Geology.

Scientists from British Antarctic Survey (BAS), Durham University and Germany’s Alfred Wegener Institute for Polar and Marine Research (AWI) collected boulders deposited by three glaciers in the Amundsen Sea Embayment – a region currently the focus of intense international scientific attention because it is changing faster than anywhere else on the WAIS and it has the potential to raise sea-level by around 1.5 metres.

Analysis of the boulders has enabled the scientists to start constructing a long-term picture of glacier behaviour in the region. An urgent task is to put recent ice sheet changes into a historical context, and determine if these are part of a natural retreat since the end of the last glacial period (about 20 thousands years ago), or if they are a result of recent human-induced climate change.

Lead author Dr Joanne Johnson of BAS says,
“Until now we didn’t know much about the long-term history of this part of the West Antarctic Ice Sheet because the region is incredibly remote and inaccessible. Our geological findings add a new piece to the jigsaw and will be used for improving computer models – the most important tools we have for predicting future change.”

Initial results show that Pine Island Glacier has ‘thinned’ by around 4 centimetres per year over the past 5,000 years, while Smith and Pope Glaciers thinned by just over 2 cm per year during the past 14,500 years. These rates are more than 20 times slower than recent changes: satellite, airborne and ground based observations made since the 1990s show that Pine Island Glacier has thinned by around 1.6 metres per year in recent years.

The scientists reached their conclusions by investigating how long the boulders have been exposed to cosmic radiation rather than being shielded by ice or sediment.

Co-author Dr Mike Bentley from the University of Durham said,

“When rocks are left high and dry by thinning glaciers they are exposed to high energy cosmic rays which bombard the rock. This creates atoms of particular elements that we can extract and measure in the laboratory - the longer they have been exposed the greater the build-up of these elements. The discovery that we can place a fix on when rocks were left behind by the ice has revolutionised our understanding of how the Antarctic ice sheet has behaved in the past. "

Linda Capper | alfa
Further information:
http://www.antarctica.ac.uk

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>