Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rock studies help crack questions of glacier thinning in West Antarctica

Boulders the size footballs could help scientists predict the West Antarctic Ice Sheet’s (WAIS) contribution to sea-level rise according to new research published this week in the journal Geology.

Scientists from British Antarctic Survey (BAS), Durham University and Germany’s Alfred Wegener Institute for Polar and Marine Research (AWI) collected boulders deposited by three glaciers in the Amundsen Sea Embayment – a region currently the focus of intense international scientific attention because it is changing faster than anywhere else on the WAIS and it has the potential to raise sea-level by around 1.5 metres.

Analysis of the boulders has enabled the scientists to start constructing a long-term picture of glacier behaviour in the region. An urgent task is to put recent ice sheet changes into a historical context, and determine if these are part of a natural retreat since the end of the last glacial period (about 20 thousands years ago), or if they are a result of recent human-induced climate change.

Lead author Dr Joanne Johnson of BAS says,
“Until now we didn’t know much about the long-term history of this part of the West Antarctic Ice Sheet because the region is incredibly remote and inaccessible. Our geological findings add a new piece to the jigsaw and will be used for improving computer models – the most important tools we have for predicting future change.”

Initial results show that Pine Island Glacier has ‘thinned’ by around 4 centimetres per year over the past 5,000 years, while Smith and Pope Glaciers thinned by just over 2 cm per year during the past 14,500 years. These rates are more than 20 times slower than recent changes: satellite, airborne and ground based observations made since the 1990s show that Pine Island Glacier has thinned by around 1.6 metres per year in recent years.

The scientists reached their conclusions by investigating how long the boulders have been exposed to cosmic radiation rather than being shielded by ice or sediment.

Co-author Dr Mike Bentley from the University of Durham said,

“When rocks are left high and dry by thinning glaciers they are exposed to high energy cosmic rays which bombard the rock. This creates atoms of particular elements that we can extract and measure in the laboratory - the longer they have been exposed the greater the build-up of these elements. The discovery that we can place a fix on when rocks were left behind by the ice has revolutionised our understanding of how the Antarctic ice sheet has behaved in the past. "

Linda Capper | alfa
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>