Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the atmospheres of Mars and Venus are affected by carbon monoxide

26.02.2008
New atmospheric modelling on Mars and Venus could have implications for Earth

Modelling of the Earth's atmosphere has acquired economic importance due to its use in the prediction of ozone depletion and in measuring the impact of global warming.

Now, researchers, writing in the online open access journal PMC Physics B have found that the rate at which electrons lose energy to carbon monoxide is greater than that to carbon dioxide at higher levels in the atmospheres of both Mars and Venus.

This finding contributes to the body of knowledge required for modelling of the atmospheres of Mars and Venus, which in turn provides an opportunity to validate the techniques used in modelling of more complicated atmospheres such as that of Earth.

Solar energy is both absorbed in atmospheres and eventually emitted to space by processes at the atomic level. These complicated processes need to be parameterised so that huge numbers of individual interactions can be included in models. Modelling of the atmospheres of other planets is useful because the techniques can be developed and tested on different environments, which are not complicated by biological or human activity.

Researchers investigated the process in which free electrons in the atmospheres of Mars and Venus produce vibrational excitation of carbon monoxide. The electrons have a spread of energies and each energy has a different probability of producing excitation. They calculate this process in detail to produce a parameter called the electron energy transfer rate, which is rate at which energy is transferred from electrons to carbon monoxide at a particular electron temperature. Applying this parameter they discovered that the rate at which electrons lose energy to carbon monoxide is greater than that to carbon dioxide at higher levels in the atmospheres of both Mars and Venus.

Author Laurence Campbell from Flinders University, Australia said “The process of validating models of the atmospheres of Mars and Venus would be expected to contribute to the modelling techniques used for the Earth’s atmosphere” He went on to comment on the new journal “We’re delighted to have our article published in PMC Physics B. Editor-in-Chief Professor Stephen Buckman has an outstanding reputation and we are truly excited to support the journal and the open access movement.”

Speaking of this first article published in PMC Physics B, PhysMath Central's Chris Leonard said "We're very proud to have this high-quality research freely available to all via our open access journals. The broad scope of this journal will hopefully bring this work to the attention of researchers in adjacent fields and lead to a more complete picture of atomic processes in global warming."

Matt McKay | alfa
Further information:
http://www.physmathcentral.com/1754-0429/1/3/abstract

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>