Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA co-sponsors ocean voyage to probe climate-relevant gases

25.02.2008
More than 30 scientists will embark next week on a research mission to the Southern Ocean. Researchers will battle the elements to study how gases important to climate change move between the atmosphere and the ocean under high winds and seas.

NASA, the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation are sponsoring the Southern Ocean Gas Exchange Experiment, a six-week research expedition aboard the NOAA ship Ronald H. Brown, departing Feb. 28 from Punta Arenas, Chile. The Ronald H. Brown is a state-of-the-art oceanographic research platform and the largest research vessel in the NOAA fleet.

Scientists from dozens of universities and research institutions plan to measure turbulence, waves, bubbles, temperature and ocean color, and investigate how these factors relate to the air-sea exchange of carbon dioxide and other climate-relevant gases. The research will help improve the accuracy of climate models and predictions.

The world's oceans are estimated to absorb about 2 billion metric tons of carbon from the atmosphere every year, which is about 30 percent of the total annual global emissions of carbon dioxide. Scientists know higher wind speeds promote faster exchange of gases, but there have been very few studies aimed at directly measuring these exchanges under real world conditions where other factors, such as breaking waves, can influence the process.

"NASA's ongoing effort to understand the global carbon cycle will benefit from the data this cruise will produce about the mechanisms that govern gas transfer in this remote part of the world's ocean," said Paula Bontempi, manager of NASA's ocean biology and biogeochemistry research program at NASA Headquarters in Washington. "NASA's global satellite observations of ocean color that reveal so much about the health of our oceans also will be improved in this region as we validate what our space-based sensors see with direct measurements taken at sea."

NASA's Aqua satellite makes ocean color observations over the Southern Ocean every few days with the Moderate Resolution Imaging Spectroradiometer. The satellite, launched in 2002, uses six instruments to make global measurements of the atmosphere, land, oceans, and snow and ice cover.

The Southern Ocean covers a vast area and has some of the roughest seas on Earth.

"It is the largest ocean region where the surface waters directly connect to the ocean interior, providing a pathway into the deep sea for carbon dioxide released from human activities," said Christopher Sabine, an oceanographer at NOAA's Pacific Marine Environmental Laboratory, Seattle, and co-chief scientist on the cruise. "Understanding how atmospheric carbon dioxide is absorbed into these cold surface waters under high winds speeds is important for determining how the ocean uptake of carbon dioxide will respond to future climate change."

"We will be directly assessing the rate and mechanism by which the ocean is taking up carbon and releasing it," said cruise co-chief scientist David Ho of Lamont-Doherty Earth Observatory of Columbia University, Palisades, N.Y. "This is the first U.S.-led effort to use all the state-of-the-art tools that we have to quantify gas exchange in the Southern Ocean. After years of planning, it is extremely satisfying to see the experiment finally take place."

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://so-gasex.org
http://www.nasa.gov/home/hqnews/2008/feb/HQ_08063_NASA_Southern_Ocean_Cruise.html

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>