Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA co-sponsors ocean voyage to probe climate-relevant gases

25.02.2008
More than 30 scientists will embark next week on a research mission to the Southern Ocean. Researchers will battle the elements to study how gases important to climate change move between the atmosphere and the ocean under high winds and seas.

NASA, the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation are sponsoring the Southern Ocean Gas Exchange Experiment, a six-week research expedition aboard the NOAA ship Ronald H. Brown, departing Feb. 28 from Punta Arenas, Chile. The Ronald H. Brown is a state-of-the-art oceanographic research platform and the largest research vessel in the NOAA fleet.

Scientists from dozens of universities and research institutions plan to measure turbulence, waves, bubbles, temperature and ocean color, and investigate how these factors relate to the air-sea exchange of carbon dioxide and other climate-relevant gases. The research will help improve the accuracy of climate models and predictions.

The world's oceans are estimated to absorb about 2 billion metric tons of carbon from the atmosphere every year, which is about 30 percent of the total annual global emissions of carbon dioxide. Scientists know higher wind speeds promote faster exchange of gases, but there have been very few studies aimed at directly measuring these exchanges under real world conditions where other factors, such as breaking waves, can influence the process.

"NASA's ongoing effort to understand the global carbon cycle will benefit from the data this cruise will produce about the mechanisms that govern gas transfer in this remote part of the world's ocean," said Paula Bontempi, manager of NASA's ocean biology and biogeochemistry research program at NASA Headquarters in Washington. "NASA's global satellite observations of ocean color that reveal so much about the health of our oceans also will be improved in this region as we validate what our space-based sensors see with direct measurements taken at sea."

NASA's Aqua satellite makes ocean color observations over the Southern Ocean every few days with the Moderate Resolution Imaging Spectroradiometer. The satellite, launched in 2002, uses six instruments to make global measurements of the atmosphere, land, oceans, and snow and ice cover.

The Southern Ocean covers a vast area and has some of the roughest seas on Earth.

"It is the largest ocean region where the surface waters directly connect to the ocean interior, providing a pathway into the deep sea for carbon dioxide released from human activities," said Christopher Sabine, an oceanographer at NOAA's Pacific Marine Environmental Laboratory, Seattle, and co-chief scientist on the cruise. "Understanding how atmospheric carbon dioxide is absorbed into these cold surface waters under high winds speeds is important for determining how the ocean uptake of carbon dioxide will respond to future climate change."

"We will be directly assessing the rate and mechanism by which the ocean is taking up carbon and releasing it," said cruise co-chief scientist David Ho of Lamont-Doherty Earth Observatory of Columbia University, Palisades, N.Y. "This is the first U.S.-led effort to use all the state-of-the-art tools that we have to quantify gas exchange in the Southern Ocean. After years of planning, it is extremely satisfying to see the experiment finally take place."

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://so-gasex.org
http://www.nasa.gov/home/hqnews/2008/feb/HQ_08063_NASA_Southern_Ocean_Cruise.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>