Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland's rising air temperatures drive ice loss at surface and beyond

25.02.2008
A new NASA study confirms that the surface temperature of Greenland's massive ice sheet has been rising, stoked by warming air temperatures, and fueling loss of the island's ice at the surface and throughout the mass beneath.

Greenland's enormous ice sheet is home to enough ice to raise sea level by about 23 feet if the entire ice sheet were to melt into surrounding waters. Though the loss of the whole ice sheet is unlikely, loss from Greenland's ice mass has already contributed in part to 20th century sea level rise of about two millimeters per year, and future melt has the potential to impact people and economies across the globe.

So NASA scientists used state-of-the-art NASA satellite technologies to explore the behavior of the ice sheet, revealing a relationship between changes at the surface and below. The new NASA study appears in the January issue of the quarterly Journal of Glaciology.

"The relationship between surface temperature and mass loss lends further credence to earlier work showing rapid response of the ice sheet to surface meltwater," said Dorothy Hall, a senior researcher in Cryospheric Sciences at NASA's Goddard Space Flight Center, in Greenbelt, Md., and lead author of the study.

A team led by Hall used temperature data captured each day from 2000 through 2006 from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite. They measured changes in the surface temperature to within about one degree of accuracy from about 440 miles away in space. They also measured melt area within each of the six major drainage basins of the ice sheet to see whether melt has become more extensive and longer lasting, and to see how the various parts of the ice sheet are reacting to increasing air temperatures.

The team took their research at the ice sheet's surface a step further, becoming the first to pair the surface temperature data with satellite gravity data to investigate what internal ice changes occur as the surface melts. Geophysicist and co-author, Scott Luthcke, also of NASA Goddard, developed a mathematical solution, using gravity data from NASA's Gravity Recovery and Climate Experiment (GRACE) twin satellite system. "This solution has permitted greatly-improved detail in both time and space, allowing measurement of mass change at the low-elevation coastal regions of the ice sheet where most of the melting is occurring," said Luthcke.

The paired surface temperature and gravity data confirm a strong connection between melting on ice sheet surfaces in areas below 6,500 feet in elevation, and ice loss throughout the ice sheet's giant mass. The result led Hall's team to conclude that the start of surface melting triggers mass loss of ice over large areas of the ice sheet.

The beginning of mass loss is highly sensitive to even minor amounts of surface melt. Hall and her colleagues showed that when less than two percent of the lower reaches of the ice sheet begins to melt at the surface, mass loss of ice can result. For example, in 2004 and 2005, the GRACE satellites recorded the onset of rapid subsurface ice loss less than 15 days after surface melting was captured by the Terra satellite.

"We're seeing a close correspondence between the date that surface melting begins, and the date that mass loss of ice begins beneath the surface," Hall said. "This indicates that the meltwater from the surface must be traveling down to the base of the ice sheet -- through over a mile of ice -- very rapidly, where its presence allows the ice at the base to slide forward, speeding the flow of outlet glaciers that discharge icebergs and water into the surrounding ocean."

Hall underscores the importance of combining results from multiple NASA satellites to improve understanding of the ice sheet's behavior. "We find that when we look at results from different satellite sensors and those results agree, the confidence in the conclusions is very high," said Hall.

Hall and her colleagues believe that air temperature increases are responsible for increasing ice sheet surface temperatures and thus more-extensive surface melt. "If air temperatures continue rising over Greenland, surface melt will continue to play a large role in the overall loss of ice mass." She also noted that the team's detailed study using the high-resolution MODIS data show that various parts of the ice sheet are reacting differently to air temperature increases, perhaps reacting to different climate-driven forces. This is important because much of the southern coastal area of the ice sheet is already near the melting point (0 degrees Celsius) during the summer.

Changes in Greenland's ice sheet surface temperature have been measured by satellites dating back to 1981. "Earlier work has shown increasing surface temperatures from 1981 to the present," said Hall. "However, additional years with more accurate and finer resolution data now available using Terra's imager are providing more information on the surface temperature within individual basins on the ice sheet, and about trends in ice sheet surface temperature. Combining this data with data from GRACE, arms us with better tools to establish the relationship between surface melting and loss of ice mass."

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>