Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fresh Look Inside Mount St. Helens

21.02.2008
Volcanoes are notoriously hard to study. All the action takes place deep inside, at enormous temperatures. So geophysicists make models, using what they know to develop theories about what they don’t know.

Research led by Gregory P. Waite, an assistant professor of geophysics at Michigan Technological University, has produced a new seismic model for figuring out what’s going on inside Mount St. Helens, North America’s most active volcano. Waite hopes his research into the causes of the earthquakes that accompany the eruption of a volcano will help scientists better assess the hazard of a violent explosion at Mount St. Helens and similar volcanoes.

Waite and co-authors Bernard A. Chouet and Phillip B. Dawson published their findings on February 19, 2008, in the Journal of Geophysical Research. Waite’s research was conducted during a Mendenhall Postdoctoral Fellowship with the U.S. Geological Survey (USGS).

Volcanoes don’t always erupt suddenly and violently. The most recent eruption of Mount St Helens, for example, began in October 2004 and is still going on. It’s what Waite and other volcanologists call a passive eruption, with thick and sticky lava squeezing slowly out of the ground like toothpaste from a tube.

When a volcano such as Mount St Helens erupts, it can cause a series of shallow, repetitive earthquakes at intervals so regular that they’ve been called “drumbeat earthquakes.” Until now, scientists generally believed that these earthquakes were caused by the jerky movements of a solid plug of molten rock traveling up from the volcano’s core, a process known as the stick-slip model.

Modeling of seismic data collected by Waite and colleagues dispute that explanation. “The regularity and similarity of the shallow earthquakes seem consistent with a stick-slip model,” said Waite. Broadband measurements indicated that the energy is concentrated in a short bandwidth—between .5 and 2 Hz—and the earthquakes have nearly identical wave forms. Interestingly, the first motions observed at all of the seismic stations were the same.

“But this is not typical of a stick-slip event,” Waite said. “Rather, it suggests a source with a net volume change, such as a resonating fluid-filled crack.”

The fluid in the crack most likely is steam, derived from the magma and combined with water vaporized by the heat of the molten rock. A continuous supply of heat and fluid keeps the crack pressurized and the “drumbeats” beating, Waite explained.

“The pressurized crack in our model is filled with steam that could conceivably drive a small explosive eruption if the pattern (of earthquakes) we observe is disturbed,” he noted. Mount St. Helens erupted violently in 1980, losing nearly 1,000 feet of its cone-shaped top.

“The cause of Mount St. Helens earthquakes during the 2004-2008 eruption has been a matter of great debate,” said Seth Moran, the principal USGS seismologist monitoring the current eruption. “Greg collected a fantastic dataset with temporary seismometers and used highly sophisticated modeling techniques to produce a robust and intriguing model for the process responsible for those earthquakes. His model is somewhat different from the hypothesis that many other Mount St. Helens researchers have been using,” the seismologist went on to say, “and we are adjusting our understanding of the mechanics underlying the current eruption to incorporate his results.”

Waite’s co-author, Chouet, who also works for the USGS, proposed a similar seismological model for volcanoes in Hawaii, where the lava is much more fluid and flows more easily. This is the first time the model has been applied to volcanoes like Mount St. Helens, with slow-flowing, sticky lava.

Michigan Technological University is a leading public research university, conducting research, developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 120 undergraduate and graduate degree programs in engineering, forestry and environmental sciences, computer sciences, technology, business and economics, natural and physical sciences, arts, humanities and social sciences.

Jennifer Donovan | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>