Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change may become major player in ozone loss

05.06.2002


While industrial products like chlorofluorocarbons are largely responsible for current ozone depletion, a NASA study finds that by the 2030s climate change may surpass chlorofluorocarbons (CFCs) as the main driver of overall ozone loss.



Drew Shindell, an atmospheric scientist from NASA’s Goddard Institute for Space Studies (GISS) and Columbia University, N.Y., finds that greenhouse gases like methane and carbon dioxide are changing the climate in many ways. Some of those effects include water vapor increases and temperature changes in the upper atmosphere, which may delay future ozone recovery over heavily populated areas.

Scientists have expected the ozone layer to recover as a result of international agreements to ban CFCs that destroy ozone. CFCs, once used in cooling systems and aerosols, can last for decades in the upper atmosphere, where they break down, react with ozone, and destroy it. They remain the major cause of present-day ozone depletion.


"It’s hard to tell if those great international agreements [to ban CFCs] work if we don’t understand the other big things that are going on in the stratosphere, such as increases in greenhouse gases and water vapor," Shindell said. The stratosphere is a dry atmospheric layer between 6 and 30 miles (9.7 and 48.3 kilometers) up where most ozone exists.

Ozone shields the planet’s surface from the Sun’s harmful ultraviolet radiation and makes life on Earth possible. The study examined the ozone layer over heavily populated areas around the equator and mid-latitudes where ozone thinning occurs, excluding the Polar regions, where ’ozone holes’ form.

Ozone thinning can occur when increased emissions of methane get transformed into water in the stratosphere. At high altitudes, water vapor can be broken down into molecules that destroy ozone.

Also, methane and carbon dioxide change our climate by trapping heat in the atmosphere before it can escape out to space. This greenhouse effect, much like the inside of a car with all the windows closed, heats the air within the lowest layer of the atmosphere, called the troposphere. Warming in the troposphere can alter atmospheric circulation and make the air wetter, since warmer air holds more water. Though complex and not well understood, there is evidence that water vapor can get wafted from the troposphere into the stratosphere by shifting air currents caused by climate change.

Climate change from greenhouse gases can also affect ozone by heating the lower stratosphere where most of the ozone exists. When the lower stratosphere heats, chemical reactions speed up, and ozone gets depleted.

The chemical and atmospheric processes in the lower stratosphere are complex, quite variable, and not well understood. Shindell focused his study largely on the upper stratosphere where processes are simpler and better understood, and then used those findings to make inferences about ozone in the lower stratosphere.

Computer model simulations were used to separate the different factors that contribute to ozone changes. According to the models, which contain some uncertainty, ozone levels are expected to reach their lowest point in recorded history by around 2006. Scientists hope that by banning CFCs, ozone will eventually return to healthier levels, like those that existed prior to 1979.

One simulation isolated the impacts of CFCs on ozone, and showed that as CFCs decline, by the year 2040 overall ozone makes close to a full recovery from current low levels. When CFCs, water vapor and temperature changes were all combined in a computer model, by 2040, overall ozone levels recovered only slightly from their current low point.

These computer simulations suggest that climate change from greenhouse gases may greatly slow any anticipated ozone recovery. Shindell said the effects of climate change need to be better accounted for as scientists and others try to track the success of international agreements, like the 1987 Montreal Protocol that banned CFCs.


The paper appears in the latest issue of the Journal of Geophysical Research - Atmospheres.

The study was supported by NASA’s Atmospheric Chemistry Modeling and Analysis Program, and a NASA Earth Observing System postdoctoral Fellowship. Some of the data used was obtained from the NASA Langley Research Center’s EOSDIS Distributed Active Archive Center.

Krishna Ramanujan | EurekAlert
Further information:
http://www.gsfc.nasa.gov/topstory/20020422greengas.html

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>