Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Into the abyss: Deep-sixing carbon

20.02.2008
Imagine a gigantic, inflatable, sausage-like bag capable of storing 160 million tonnes of CO2 – the equivalent of 2.2 days of current global emissions. Now try to picture that container, measuring up to 100 metres in radius and several kilometres long, resting benignly on the seabed more than 3 kilometres below the ocean’s surface.

At first blush, this might appear like science fiction, but it’s an idea that gets serious attention from Dr. David Keith, one of Canada’s foremost experts on carbon capture and sequestration. Keith will talk on the subject at the 2008 Annual Conference of the American Association for the Advancement of Science in Boston at a session entitled Ocean Iron Fertilization and Carbon Sequestration: Can the Oceans Save the Planet?

“There are a lot of gee-whiz ideas for dealing with global warming that are really silly,” remarks Keith, an NSERC grantee and director of the Energy and Environmental Systems Group at University of Calgary-based Institute for Sustainable Energy, Environment and Economy. “At first glance this idea looks nutty, but as one looks closer it seems that it might technically feasible with current-day technology.” But, adds Keith, who holds the Canada Research Chair in Energy and the Environment, “it’s early days and there is not yet any serious design study for the concept.”

The original idea of ocean storage was conceived several years ago by Dr. Michael Pilson, a chemical oceanographer at the University of Rhode Island, but it really took off last year when Keith confirmed its feasibility with Dr. Andrew Palmer, a world-renowned ocean engineer at Cambridge University. Keith, Palmer and another scientist at Argonne National Laboratory later advanced the concept through a technical paper prepared for the 26th International Conference on Offshore Mechanics and Arctic Engineering in June 2007.

Keith sees this solution as a potentially useful complement to CO2 storage in geological formations, particularly for CO2 emanating from sources near deep oceans.

He believes it may offer a viable solution because vast flat plains cover huge areas of the deep oceans. These abyssal plains have little life and are benign environments. “If you stay away from the steep slopes from the continental shelves, they are a very quiet environment.”

For CO2 to be stored there, the gas must be captured from power and industrial point sources, compressed to liquid, and transported via pipelines that extend well beyond the ocean’s continental shelves. When the liquid CO2 is pumped into the deep ocean, the intense pressure and cold temperatures make it negatively buoyant.

“This negative buoyancy is the key,” explains Keith. “It means the CO2 wants to leak downwards rather than moving up to the biosphere.”

The use of containment is necessary because CO2 will tend to dissolve in the ocean, which could adversely impact marine ecosystems. Fortunately, says Keith, the cost of containment is quite minimal with this solution. He and his colleagues calculate that the bags can be constructed of existing polymers for less than four cents per tonne of carbon.

The real costs lie in the capture of CO2 and its transport to the deep ocean. “If we can drive those down,” he notes, “then ocean storage might be an important option for reducing CO2 emissions.”

Doré Dunne | EurekAlert!
Further information:
http://www.nserc.ca
http://www.ucalgary.ca

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>