Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Into the abyss: Deep-sixing carbon

20.02.2008
Imagine a gigantic, inflatable, sausage-like bag capable of storing 160 million tonnes of CO2 – the equivalent of 2.2 days of current global emissions. Now try to picture that container, measuring up to 100 metres in radius and several kilometres long, resting benignly on the seabed more than 3 kilometres below the ocean’s surface.

At first blush, this might appear like science fiction, but it’s an idea that gets serious attention from Dr. David Keith, one of Canada’s foremost experts on carbon capture and sequestration. Keith will talk on the subject at the 2008 Annual Conference of the American Association for the Advancement of Science in Boston at a session entitled Ocean Iron Fertilization and Carbon Sequestration: Can the Oceans Save the Planet?

“There are a lot of gee-whiz ideas for dealing with global warming that are really silly,” remarks Keith, an NSERC grantee and director of the Energy and Environmental Systems Group at University of Calgary-based Institute for Sustainable Energy, Environment and Economy. “At first glance this idea looks nutty, but as one looks closer it seems that it might technically feasible with current-day technology.” But, adds Keith, who holds the Canada Research Chair in Energy and the Environment, “it’s early days and there is not yet any serious design study for the concept.”

The original idea of ocean storage was conceived several years ago by Dr. Michael Pilson, a chemical oceanographer at the University of Rhode Island, but it really took off last year when Keith confirmed its feasibility with Dr. Andrew Palmer, a world-renowned ocean engineer at Cambridge University. Keith, Palmer and another scientist at Argonne National Laboratory later advanced the concept through a technical paper prepared for the 26th International Conference on Offshore Mechanics and Arctic Engineering in June 2007.

Keith sees this solution as a potentially useful complement to CO2 storage in geological formations, particularly for CO2 emanating from sources near deep oceans.

He believes it may offer a viable solution because vast flat plains cover huge areas of the deep oceans. These abyssal plains have little life and are benign environments. “If you stay away from the steep slopes from the continental shelves, they are a very quiet environment.”

For CO2 to be stored there, the gas must be captured from power and industrial point sources, compressed to liquid, and transported via pipelines that extend well beyond the ocean’s continental shelves. When the liquid CO2 is pumped into the deep ocean, the intense pressure and cold temperatures make it negatively buoyant.

“This negative buoyancy is the key,” explains Keith. “It means the CO2 wants to leak downwards rather than moving up to the biosphere.”

The use of containment is necessary because CO2 will tend to dissolve in the ocean, which could adversely impact marine ecosystems. Fortunately, says Keith, the cost of containment is quite minimal with this solution. He and his colleagues calculate that the bags can be constructed of existing polymers for less than four cents per tonne of carbon.

The real costs lie in the capture of CO2 and its transport to the deep ocean. “If we can drive those down,” he notes, “then ocean storage might be an important option for reducing CO2 emissions.”

Doré Dunne | EurekAlert!
Further information:
http://www.nserc.ca
http://www.ucalgary.ca

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>