Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key to quieter Atlantic hurricane seasons may be blowing in the wind

18.02.2008
Every year, storms over West Africa disturb millions of tons of dust and strong winds carry those particles into the skies over the Atlantic. According to a recent study led by University of Wisconsin-Madison atmospheric scientists, this dust from Africa directly affects ocean temperature, a key ingredient in Atlantic hurricane development.

"At least one third of the recent increase in Atlantic Ocean temperatures is due to a decrease in dust storms," says lead author Amato Evan, a researcher at UW-Madison's Cooperative Institute for Meteorological Satellite Studies (CIMSS).

In a paper published online today in "Geochemistry, Geophysics, Geosystems," the team of scientists describes how dust in the atmosphere cools the ocean by decreasing the amount of energy that reaches the water. The study also demonstrated that the large amount of dust blowing off of Africa in the 1980s and '90s likely cooled the Atlantic enough to prevent conditions that could have resulted in more devastating hurricane seasons similar to 2004 and 2005.

As dust from Africa accumulates in the skies over the Atlantic, the atmosphere above the ocean begins to resemble the conditions over Africa. Millions of tons of dust create a drier environment and also reduce the amount of sunlight that reaches the ocean. Using a 25-year data record created by co-author Andrew Heidinger, a researcher with the National Oceanic and Atmospheric Administration (NOAA), Evan assessed how much the dust cooled the temperature of the ocean.

"It's not just one dust storm," Evan says. "It's the cumulative effect of several months of dust storms."

The 2007 Atlantic hurricane season, for example, was much quieter than predicted and the Atlantic was cooler than in previous years. Evan suggests that the relative lack of hurricane activity and cool ocean temperatures could be partially due to a particularly dusty spring and early summer. 2007 was the dustiest year since 1999.

By putting satellite observations and other atmospheric information into a computer simulation, Evan assessed how much energy reached the ocean with the dust in the atmosphere and then again after removing the dust. Evan found that dust cools the Atlantic by an average of one degree Celsius, about two degrees Fahrenheit, each year. In years with a lot of dust activity, such as the 1980s, the dust had a larger cooling effect.

In a study published in fall 2006 in "Geophysical Research Letters," Evan demonstrated that the intensity of hurricane seasons in the Atlantic increased when the amount of dust blowing off of Africa decreased and vice versa. The study published today is an effort to explain why this relationship exists and what the past few decades would have looked like without the effects of dust. Evan says these results confirm a direct connection between the intensity of dust storms in Africa and that of hurricanes in the Atlantic.

Because of the direct relationship, the amount of dust in the atmosphere could contribute to hurricane season forecasts. "Dust prediction is another tool to diagnose hurricane activity," Evan says. Evan has done some preliminary work to develop an effective way to use satellite observations to predict dust activity up to nine months in advance.

Dust storms in Africa have a significant impact on the temperature of the Atlantic Ocean, which, in turn, plays a large role in hurricane activity. Although climate change has taken the spotlight in media conversations about hurricanes, many factors influence these complicated storms. Of the effects of global warming, Evan says: "It's real, but that's not all there is."

Amato Evan | EurekAlert!
Further information:
http://www.ssec.wisc.edu
http://www.news.wisc.edu/newsphotos/dustCloud.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>