Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Greenland Ice Sheet Data Will Impact Climate Change Models

14.02.2008
With digital imaging techniques, scientists find new data in old aerial photographs

A comprehensive new study authored by University at Buffalo scientists and their colleagues for the first time documents in detail the dynamics of parts of Greenland's ice sheet, important data that have long been missing from the ice sheet models on which projections about sea level rise and global warming are based.

The research, published online this month in the Journal of Glaciology, also demonstrates how remote sensing and digital imaging techniques can produce rich datasets without field data in some cases.

Traditionally, ice sheet models are very simplified, according to Beata Csatho, Ph.D., assistant professor of geology in the UB College of Arts and Sciences and lead author of the paper.

"Ice sheet models usually don't include all the complexity of ice dynamics that can happen in nature," said Csatho. "This research will give ice sheet modelers more precise, more detailed data."

The implications of these richer datasets may be dramatic, Csatho said, especially as they impact climate projections and sea-level rise estimates, such as those made by the United Nations Intergovernmental Panel on Climate Change (IPCC).

"If current climate models from the IPCC included data from ice dynamics in Greenland, the sea level rise estimated during this century could be twice as high as what they are currently projecting," she said.

The paper focuses on Jakobshavn Isbrae, Greenland's fastest moving glacier and its largest, measuring four miles wide.

During the past decade, Jakobshavn Isbrae has begun to experience rapid thinning and doubling of the amount of ice it discharges into Disko Bay.

"Although the thinning started as early as the end of the 18th century, the changes we are seeing now are bigger than can be accounted for by normal, annual perturbations in climate," Csatho said.

In order to document the most comprehensive story possible of the behavior of Jakobshavn Isbrae since the Little Ice Age in the late 1800s, Csatho and her colleagues at Ohio State University, the University of Kansas and NASA used a combination of techniques.

These included field mapping, remote sensing, satellite imaging and the application of digital techniques in order to glean "hidden" data from historic aerial photographs as many as 60 years after they were taken.

By themselves, Csatho explained, the two-dimensional pictures were of limited value.

"But now we can digitize them, removing the boundaries between them and turning several pictures into a single 'mosaic' that will produce one data set that can be viewed in three-dimensions," she said.

"By reprocessing old data contained in these old photographs and records, we have been able to construct a long-term record of the behavior of the glacier," said Csatho. "This was the first time that the data from the '40s could be reused in a coherent way."

The data from the historic photos were combined with data from historical records, ground surveys, field mapping and measurements taken from the air to document important signs of change in the glacier's geometry.

Csatho explained that conventional methods of assessing change in glaciers have depended on documenting "iceberg calving," in which large pieces at the front of the glacier break off.

"But we found that you can get significant changes in the ice sheet without seeing a change in front," she said.

Other key findings of the paper are that two different parts of the same glacier may behave quite differently and that a glacier does not necessarily react to climate change as a single, monolithic entity.

"Climate forces are complex," Csatho said. "For example, we found that the northern part of Jakobshavn was still thinning while the climate was colder between the 1960s and the 1990s."

Csatho, who is a geophysicist, added that the research is the result of a strong interdisciplinary team involving experts in glaciology, ice sheet modeling and photogrammetry, the science of making measurements based on photographs.

At UB, research in Csatho's remote sensing laboratory -- http://rsl.geology.buffalo.edu/ -- focuses on a multidisciplinary approach that integrates information across the geosciences.

Csatho's co-authors on the paper are Tony Schenk of the Ohio State University Department of Civil and Environmental Engineering and Geodetic Science; Kees van der Veen of the Center for Remote Sensing of Ice Sheets at the University of Kansas, and William B. Krabill of the National Aeronautics and Space Administration's Cryospheric Sciences Branch.

The research was funded by the National Science Foundation and NASA.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system that is its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>