Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rising Temperatures Tied to Flowers’ Earlier Bloom


The results of a new study suggest that rising temperatures are leaving a mark on the world. According to a report published in the current issue of the journal Science, the first flowering of plants in Britain has changed by as much as 55 days over the past few decades in response to warmer weather. The results, the scientists say, are the "strongest biological signal yet of climatic change."

Alastair Fitter of the University of York and his father, naturalist Richard Fitter, analyzed 47 years of data that the senior Fitter collected from a single location in England. They determined that, on average, the first flowering for 385 plant species in the past decade occurred 4.5 days earlier than it did between 1954 and 1990. For 16 percent of the species, the date of the first bloom advanced by 15 days and one particularly affected plant, the white dead nettle, bloomed 55 days earlier than it had three decades ago. Since the 1960s, the mean temperatures for January, February and March--important months for spring flowering plants--have increased by 1.8 degrees Fahrenheit. If global temperatures continue to increase (some predictions for future warming are more than six degrees Fahrenheit), more dramatic changes could lie ahead.

The earlier bloom affects more than just the date when a garden will burst into color, the scientists report. Because some species are changing but others are not, plants may be forced into competition with unfamiliar foes. Moreover, the development of new hybrid species could be curtailed. The violet species Viola odorata and Viola hirta, for example, used to flower simultaneously. But because the former now flowers a month sooner than the latter, they are less likely to hybridize in the future. The authors conclude that the changes they have recorded, together with alterations to species’ geographical range that often accompany climate change, will have "profound ecosystem and evolutionary consequences."

Sarah Graham | Scientific American

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>