Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers give new hybrid vehicle its first test drive in the ocean

11.02.2008
Profiling glider collects propulsion energy from the heat differences in the ocean

Taking a page out of a science fiction story, researchers from the Woods Hole Oceanographic Institution (WHOI) and Webb Research Corporation (Falmouth, Mass.) have successfully flown the first environmentally powered robotic vehicle through the ocean. The new robotic “glider” harvests heat energy from the ocean to propel itself across thousands of kilometers of water.

In December 2007, a research team led by oceanographers Dave Fratantoni of WHOI and Roy Watlington of the University of the Virgin Islands launched a prototype “thermal glider” off the coast of St. Thomas. The vehicle has been traveling uninterrupted ever since, crisscrossing the 4,000-meter-deep Virgin Islands Basin between St. Thomas and St Croix more than 20 times.

Engineers and researchers--including research associate John Lund and postdoctoral investigator Ben Hodges from WHOI, and engineers Clayton Jones and Tod Patterson of Webb Research--project that the thermal glider could continue its current, “green-powered” mission for as long as six months.

Unlike motorized, propeller-driven vehicles, gliders propel themselves through the ocean by changing their buoyancy to dive and surface. Wings generate lift, while a vertical tail fin and rudder allow the vehicles to be steered horizontally. Gliding underwater vehicles trace a saw-tooth profile through the ocean’s layers, surfacing periodically to fix their positions via the Global Positioning System and to communicate via Iridium satellite to a shore lab.

“Gliders can be put to work on tasks that humans wouldn’t want to do or cannot do because of time and cost concerns,” said Fratantoni, an associate scientist in the WHOI Department of Physical Oceanography. “They can work around the clock in all weather conditions.” The vehicles can carry a variety of sensors to collect measurements such as temperature, salinity, and biological productivity. Gliders also operate quietly, which makes them ideal for acoustic studies.

Though the thermal glider is not the first autonomous underwater vehicle to traverse great distances or stay at sea for long periods, it is the first to do so with green energy. Most gliders rely on battery-powered motors and mechanical pumps to move ballast water or oil from inside the vehicle’s pressure hull to outside. The idea is to increase or decrease the displacement (volume) of the glider without changing its mass.

The new thermal glider draws its energy for propulsion from the differences in temperature—thermal stratification—between warm surface waters and colder, deeper layers of the ocean. The heat content of the ocean warms wax-filled tubes inside the engine. The expansion of the warming wax converts heat to mechanical energy, which is stored and used to push oil from a bladder inside the vehicle’s hull to one outside, changing its buoyancy. Cooling of the wax at depth completes the cycle.

“We are tapping a virtually unlimited energy source for propulsion,” said Fratantoni. The computers, radio transmitters, and other electronics on the glider are powered by alkaline batteries, which are, for now, the principal limit on the length of operation. Webb Research is working to reduce the electrical needs of the instruments, while also developing the capability to convert some of the thermal energy to power for the electronics.

The thermal glider concept was conceived in the 1980s by Doug Webb, a former WHOI research specialist who founded the Webb Research Corporation. Webb collaborated extensively with renowned WHOI physical oceanographer Henry Stommel, who championed the idea to the U.S. Navy and the oceanographic community. Stommel even penned a science fiction story—published in the journal Oceanography—about a fleet of Webb’s gliding sentinels bobbing through the ocean. Webb and Stommel named the vehicles “Slocum” gliders for Joshua Slocum, the first man to single-handedly sail around the world.

Over the past decade, Fratantoni’s Autonomous Systems Laboratory has become Webb’s chief scientific partner in Woods Hole, testing and deploying the gliders in various underwater environments. Several battery-powered Slocum gliders have been deployed in shallower waters for coastal studies, for acoustics and marine mammal research, and for studies of currents and ocean circulation.

Recent funding for scientific missions and field testing of the glider system has been provided by the U.S. Office of Naval Research and the Grayce B. Kerr Fund.

“The current mission is an engineering test-drive, but it’s also occurring in a scientifically compelling location,” said Fratantoni. Swirling water currents, known as eddies, form upstream of the Virgin Islands. The data collected by the new glider system will help researchers understand how these eddies affect regional circulation and redistribute the larvae of coral reef fish and man-made pollutants.

The engineering trial for the thermal glider is the first step in a broader plan by Fratantoni and colleagues to launch a fleet of gliders for studies of the waters in the subtropical gyre of the North Atlantic, a key region for assessing the ocean’s response to climate change. He plans to test the glider with a trip from St. Thomas to Bermuda later this spring.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>