Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural ocean thermostat may protect some coral reefs

08.02.2008
Natural processes may prevent oceans from warming beyond a certain point, helping protect some coral reefs from the impacts of climate change, new research finds. The study provides evidence that an ocean "thermostat" may be helping regulate sea-surface temperatures in a biologically diverse region of the western Pacific.
The research will be published Saturday, 9 February in Geophysical Research Letters, a journal of the American Geophysical Union.

The research team, led by Joan Kleypas of the National Center for Atmospheric Research (NCAR), looks at the Western Pacific Warm Pool, a region northeast of Australia where naturally warm sea-surface temperatures have risen little in recent decades. As a result, the reefs in that region appear to have suffered relatively few episodes of coral bleaching, a phenomenon that has damaged reefs in other areas where temperature increases have been more pronounced.

The study lends support to a much-debated theory that a natural ocean thermostat prevents sea-surface temperatures from exceeding about 88 degrees Fahrenheit (31 degrees Celsius) in open oceans. If so, this thermostat would protect reefs that have evolved in naturally warm waters that will not warm much further, as opposed to reefs that live in slightly cooler waters that face more significant warming.

"Global warming is damaging many corals, but it appears to be bypassing certain reefs that support some of the greatest diversity of life on the planet," Kleypas says. "In essence, reefs that are already in hot water may be more protected from warming than reefs that are not. This is some rare hopeful news for these important ecosystems."

Coral reefs face a multitude of threats, including overfishing, coastal development, pollution, and changes to ocean chemistry caused by rising levels of carbon dioxide in the atmosphere. But global warming presents a particularly grave threat because unusually warm ocean temperatures can lead to episodes of coral bleaching, in which corals turn white after expelling the colorful microscopic algae that provide them with nutrition. Unless cooler temperatures return in a few days or weeks, allowing algae to grow again, bleached corals often collapse and die.

Bleaching can occur naturally, but it has become increasingly widespread in recent decades. This is largely because sea-surface temperatures in tropical waters where corals live have increased about 0.5-0.7 degrees Fahrenheit (0.3-0.4 degrees Celsius) over the last two to three decades, with temperatures occasionally spiking higher.

However, between 1980 and 2005, only four episodes of bleaching have been reported for reefs in the Western Pacific Warm Pool. This is a lower rate than any other reef region, even though the western Pacific reefs appear to be especially sensitive to temperature changes. Sea-surface temperatures in the warm pool naturally average about 85 degrees Fahrenheit (29 degrees Celsius), which is close to the proposed thermostat limit. They have warmed up by about half as much as in cooler areas of the oceans.

To study the correlation between temperatures and bleaching, Kleypas and her co- authors at NCAR and the Australian Institute of Marine Science (AIMS) analyze 1950-2006 sea-surface temperatures in tropical waters that are home to corals, relying on measurements taken by ships, buoys, and satellites. The scientists also study computer simulations of past and future sea-surface temperatures. They compare the actual and simulated temperatures to a database of coral bleaching reports, mostly taken from 1980 to 2005.

Researchers have speculated about several processes that could regulate ocean temperatures. As surface waters warm, more water evaporates, which can increase cloud cover and winds that cool the surface. In some areas, warming alters ocean currents in ways that bring in cooler waters. In addition, the very process of evaporation removes heat.

"This year, 2008, is the International Year of the Reef, and we need to go beyond the dire predictions for coral reefs and find ways to conserve them," Kleypas says. "Warming waters are just one part of the picture, but they are an important part. As we evaluate how and where to protect reefs, we need to determine whether the ocean thermostat offers some protection against coral bleaching."

Kleypas and her co-authors say more research needs to be conducted on the thermostat. In particular, scientists are uncertain whether global warming may alter it, raising the upper limit for sea-surface temperatures. Computer model simulations tend to capture the slow rate of warming in the western Pacific over the last few decades, but they show the warm pool heating rapidly in the future.

"Computer models of Earth's climate show that sea-surface temperatures will rise substantially this century," says NCAR scientist Gokhan Danabasoglu, a co-author of the study. "Unfortunately, these future simulations show the Western Pacific Warm Pool warming at a similar rate as the surrounding areas instead of being constrained by a thermostat. We don't know if the models are simply not capturing the processes that cause the thermostat, or if global warming is happening so rapidly that it will overwhelm the thermostat."

Funding for this research was provided by the National Science Foundation; the U.S. Department of Energy; the Japanese Ministry of Education, Culture, Sports, Science, and Technology; and AIMS.

Notes for Journalists:

Journalists and public information officers of educational and scientific institutions (only) who have registered with AGU for direct electronic access and received a username and password, can download a PDF copy of this paper by clicking on this link:

http://www.agu.org/journals/gl/gl0803/2007GL032257/2007GL032257.pdf

If you need instructions for downloading, please see:
http://www.agu.org/jinstructions.shtml
(Until Saturday, 9 February, follow the instructions for downloading papers that are "in press". However, you may quote from this paper, as it is in its final form.)

Or, you may order an emailed copy of the paper by sending a message to Peter Weiss at pweiss@agu.org. Please provide your name, the name of your publication, and your phone number. Neither the paper nor this press release are under embargo.

Title:
"Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events "
Authors:
Joan A. Kleypas, Gokhan Danabasoglu: National Center for Atmospheric Research, Boulder, Colorado, USA;

Janice M. Lough: Australian Institute of Marine Science, Townsville, Queensland, Australia.

Citation:
Kleypas, J. A., G. Danabasoglu, and J. M. Lough (2008), Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events, Geophys. Res. Lett., 35, L03613, doi:10.1029/2007GL032257.
Contact information for coauthors:
Joan Kleypas, marine biologist, 303-497-8000, kleypas@ucar.edu
Gokhan Danabasoglu, ocean modeler, 303-497-1604, gokhan@ucar.edu
Janice Lough, climatologist, 07-47-534248, j.lough@aims.gov.au

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>