Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Tipping points’ could come this century

05.02.2008
A number of key components of the earth’s climate system could pass their ‘tipping point’ this century, according to new research led by a scientist at the University of East Anglia.

Published today by the prestigious international journal Proceedings of the National Academy of Science (PNAS), the researchers have coined a new term, ‘tipping elements’, to describe those components of the climate system that are at risk of passing a tipping point.

The term ‘tipping point’ is used to describe a critical threshold at which a small change in human activity can have large, long-term consequences for the Earth’s climate system.

In this new research, lead author Prof Tim Lenton of the University of East Anglia (UEA) and colleagues at the Postdam Institute of Climate Impact Research (PIK), Carnegie Mellon University, Newcastle University and Oxford University have drawn up a shortlist of nine tipping elements relevant to current policy-making and calculated where their tipping points could lie. All of them could be tipped within the next 100 years.

The nine tipping elements and the time it will take them to undergo a major transition are:

•Melting of Arctic sea-ice (approx 10 years)
•Decay of the Greenland ice sheet (more than 300 years)
•Collapse of the West Antarctic ice sheet (more than 300 years)
•Collapse of the Atlantic thermohaline circulation (approx 100 years)
•Increase in the El Nino Southern Oscillation (approx 100 years)
•Collapse of the Indian summer monsoon (approx 1 year)
•Greening of the Sahara/Sahel and disruption of the West African monsoon (approx 10 years)
•Dieback of the Amazon rainforest (approx 50 years)
•Dieback of the Boreal Forest (approx 50 years)
The paper also demonstrates how, in principle, early warning systems could be established using real-time monitoring and modelling to detect the proximity of certain tipping points.

“Society must not be lulled into a false sense of security by smooth projections of global change,” said Prof Lenton.

“Our findings suggest that a variety of tipping elements could reach their critical point within this century under human-induced climate change. The greatest threats are tipping of the Arctic sea-ice and the Greenland ice sheet, and at least five other elements could surprise us by exhibiting a nearby tipping point.”

‘Tipping elements in the Earth’s climate system’ by Tim Lenton (UEA and Tyndall Centre), Hermann Held (PIK), Elmar Kriegler (Carnegie Mellon University and PIK), Jim Hall (Newcastle University and Tyndall Centre), Wolfgang Lucht (PIK), Stefan Rahmstorf (PIK) and Hans Joachim Schellnhuber (PIK, Oxford University and Tyndall Centre) is published by PNAS in the week beginning Monday February 4.

The findings are based on a critical review of the literature, the results of a recent workshop held at the British Embassy in Berlin which brought together 36 international experts in the field, and an elicitation exercise involving a further 52 international experts.

Press Office | alfa
Further information:
http://www.uea.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>