Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient climate secrets raised from ocean depths

04.02.2008
Scientists aboard the research vessel, Southern Surveyor, return to Hobart today with a collection of coral samples and photographs taken in the Southern Ocean at greater depths than ever before.

Using a remotely operated submersible vehicle the international research team captured images of life found on deep-sea pinnacles and valleys up to three kilometres beneath the Ocean’s surface.

During a three-week voyage, scientists from CSIRO’s Wealth from Oceans National Research Flagship and the US, collaborated to retrieve examples of live and fossilised deep-ocean corals from a depth of 1 650 metres near the Tasman Fracture Zone, south-east of Tasmania.

“These corals are evidence of an extinct coral reef,” says the voyage’s Chief Scientist, CSIRO Marine and Atmospheric Research’s Dr Ron Thresher.

“Our sampling came up with some very old fossil corals of the type we are now seeing live and forming extensive reefs at depths of 800-1300 metres. This suggests that the reef extended much deeper in the past, but how long ago or why it died out, we don't know yet,” he says.

The composition of deep-sea corals is used to determine past ocean conditions, such as temperature, salinity and the mixing of surface and deep-water layers, over tens to hundreds of thousands of years.

Dr Thresher says over the coming year the samples will be examined to determine when these newly discovered reefs existed and if their extinction can be related to long-term climate patterns.

CSIRO Marine and Atmospheric ResearchThe findings will provide ancient climate data that contribute to models of regional and global climate change, based on historical circulation patterns in the Southern Ocean.

He says that at times the submersible vehicle – or Autonomous Benthic Explorer (ABE), on loan from the Woods Hole Oceanographic Institution (WHOI) – was pushed off course while exploring the extreme depths and, in two cases, had its forward progress stopped altogether. Such movements enabled researchers to identify previously unknown and unexpectedly strong, deep currents.

“The voyage was a success despite some of the roughest conditions ever experienced by the team, particularly in deploying the ABE,” Dr Thresher says.

The voyage is part of a collaboration between CSIRO’s Wealth from Oceans Flagship, WHOI in the US, the National Science Foundation in the US, the marine division of the Australian Department of Environment, Water, Heritage and the Arts and, the Marine National Facility.

Media are invited to discuss the results with Ron Thresher, Jess Adkins (California Institute of Technology) and Dana Yoerger (WHOI) when the Southern Surveyor arrives in Hobart at 10.30 am today at CSIRO Marine and Atmospheric Research – Castray Esplanade.

CSIRO initiated the National Research Flagships to provide science-based solutions in response to Australia’s major research challenges and opportunities. The nine Flagships form multidisciplinary teams with industry and the research community to deliver impact and benefits for Australia.

Find out more about National Research Flagships.

Huw Morgan | EurekAlert!
Further information:
http://www.csiro.au/news/ps3vj.html
http://www.scienceimage.csiro.au/mediarelease/mr08-15.html

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>