Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rain takes it easy on weekends, when air is cleaner

Rainfall data recorded from space show that summertime storms in the southeastern United States shed more rainfall midweek than on weekends. Scientists say air pollution from humans is likely driving that trend.

The link between rainfall and the day of the week is evident in data from NASA's Tropical Rainfall Measuring Mission satellite, known as TRMM.

Midweek storms tend to be stronger, drop more rain, and span a larger area across the Southeast compared to calmer and dryer weekends. The findings are from a study led by Thomas Bell, an atmospheric scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Bell says the trend could be attributed to atmospheric pollution from humans, which also peaks midweek.

He and his colleagues reported their results on 31 January in the Journal of Geophysical Research - Atmospheres, a publication of the American Geophysical Union.

Rainfall measurements collected from ground-based gauges can vary from one gauge site to the next because of fickle weather patterns. So, to identify any kind of significant weekly rainfall trend, Bell and his colleagues looked at the big picture from Earth's orbit. The team collected data from instruments on the TRMM satellite, which they use to estimate daily summertime rainfall averages from 1998 to 2005, across the entire Southeast.

The team finds that, on average, it rains more between Tuesday and Thursday than from Saturday through Monday. Newly analyzed satellite data show that summer 2007 echoes the midweek trend with peak rainfall occurring late on Thursdays. However, midweek increases in rainfall are more significant in the afternoon, when the conditions for summertime storms are in place. Based on satellite data, afternoon rainfall peaks on Tuesday, with 1.8 times more rainfall than on Saturday, which experiences the least amount of afternoon rain.

The team uses ground-based data from rain gauges, along with vertical wind speed and cloud height measurements, to help confirm the weekly trend in rainfall observed from space.

To find out if pollution from humans indeed could be responsible for the midweek boost in rainfall, the team analyzes particulate matter, the concentrations of airborne particles associated with pollution, across the U. S. from 1998 to 2005.

The data, obtained from the Environmental Protection Agency, show that pollution tends to peak midweek, mirroring the trend observed in the rainfall data.

"If two things happen at the same time, it doesn't mean one caused the other,"
Bell says. "But it's well known that particulate matter has the potential to affect how clouds behave, and this kind of evidence makes the argument stronger for a link between pollution and heavier rainfall."
Scientists have long questioned the effect of workweek pollution, such as emissions from traffic, businesses, and factories, on weekly weather patterns.

Researchers know clouds are "seeded" by particulate matter. Water and ice in clouds grab hold around the particles, forming additional water droplets. Some researchers think increased pollution thwarts rainfall by dispersing the same amount of water over more seeds, preventing them from growing large enough to fall as rain.

Still, other studies suggest some factors can override this dispersion effect.

In the Southeast, summertime conditions for large, frequent storms are already in place, a factor that overrides the rain-thwarting dispersion. When conditions are ripe for big storms, updrafts carry the smaller, pollution-seeded raindrops high into the atmosphere where they condense and freeze.

"It's the freezing process that gives the storm an extra kick, causing it to grow larger and climb higher into the atmosphere," Bell says. He and his colleagues find that the radar on the TRMM satellite shows that storms climb to high altitudes more often during the middle of the week than on weekends. These invigorated midweek storms, fueled by workweek pollution, could drop measurably more rainfall.

The trend doesn't mean that it will always rain on weekday afternoons during summertime in the Southeast. Rather, "it's a tendency," says Bell. With the help of satellites, new insights into pollution's effect on weather one day could help improve the accuracy of rainfall forecasts, which Bell says, "probably under-predict rain during the week and over-predict rain on weekends."

Notes for Journalists

Journalists and public information officers of educational and scientific institutions (only) who have registered with AGU for direct electronic access and received a username and password, can download a PDF copy of this paper by clicking on this link . If you need instructions for downloading, please see .

Or, you may order an emailed copy of the paper by sending a message to Peter Weiss at Please provide your name, the name of your publication, and your phone number. Neither the paper nor this press release are under embargo.


"Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms "


Thomas L. Bell: Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA;

Daniel Rosenfeld: Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel;

Kyu-Myong Kim and Myong-In Lee: Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA, and Goddard Earth Sciences and Technology Center, Univ. Maryland Baltimore County, Baltimore, Maryland, USA;

Jung-Moon Yoo: Department of Science Education, Ewha Womans University, Seoul, South Korea;

Maura Hahnenberger: Meteorology Department, University of Utah, Salt Lake City, Utah, USA.


Bell, T. L., D. Rosenfeld, K.-M. Kim, J.-M. Yoo, M.-I. Lee, and M. Hahnenberger (2008), Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms, J. Geophys. Res., 113, D02209, doi:10.1029/2007JD008623.

Contact information for coauthors:

Thomas L. Bell, senior meteorologist: office +1 (301) 614-6197,

Peter Weiss | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>