Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mineral oil in old place

01.02.2008
Under contemporary conditions, it is more economically sound not to look for new oil fields but to overhaul old ones.

Oil reappears from time to time in old deposits and long ago exhausted oil wells. This phenomenon attracts attention of multiple researchers. Specialists of the Institute of Oil and Gas Problems under the guidance of Academician Dmitrievsky offer their explanation.

The earth's crust is similar to a sandwich cake, consisting of hard layers and fractured-porous layers saturated by various fluids, including oil. In some places, the crust is penetrated by an extremely dense network of fissures and ruptures. Ruptures form cavities located almost horizontally and united into a network.

All this complicated system is in constant motion due to tectonic forces’ action. The layers are moving, fissures are widening and acting as a rubber bulb: liquid starts coming into formed interstice from surrounding porous layers. In case of significant tectonic tensions, liquid moves at large distances.

According to the researchers’ opinion, this mechanism of liquid movement in the crust is the most intense and universal among all possible ones. It acts both in ruptures and in thin fractured layers, which stretch at significant distances. Vibrations in the crust drive fluids along all possible directions, including horizontal and even downward directions. Migration occurs along lengthy cavities and fractures systems, located at the depth of 10 to 15 kilometers.

Liquid movement caused by widening of internal cavities is of vibrating character. Oil sometimes rushes in or sometimes floods back. The mode and period of vibration depend on the size of perturbed area. In large porous layers, the vibration period makes about 10 thousand years. In the ruptures, the period is shorter and it varies from a thousand to hundreds and even dozens of years, if rupture zones are located at small depths.

The researchers have investigated the carbohydrates migration process from the petroliferous stratum into the upper layers in several regions. An example can be the Romashinskoye oilfield in Tatarstan. The volume of produced oil there has significantly exceeded the previously asserted reserves. According to the TATANEFT Joint Stock Company’s data, more than 65% of oil in Tatarstan is produced in old oilfields exhausted by 80%. However, supplementary exploration of the known deposits allowed to increment reserves of oil by one and a half times within the last 25 years. In the Romashinskoye oilfield, the researchers also discovered old exhausted drillings with regenerated inflow of oil and oil with water. The space of oil pools and their reserves increase with increasing rupture network density. It is interesting to note that the depth of sedimentary covering in the zone of the gigantic Romashinskoye oilfield does not exceed 2 kilometers on average, and this mantle does not possess significant oil potential. Most likely, oil cames to these locations from the direction of Pre-Ural downfold.

In the researchers’ opinion, to overhaul old oil deposits is currently much more profitable and efficient than expensive geological exploration works at new locations.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>