Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mineral oil in old place

01.02.2008
Under contemporary conditions, it is more economically sound not to look for new oil fields but to overhaul old ones.

Oil reappears from time to time in old deposits and long ago exhausted oil wells. This phenomenon attracts attention of multiple researchers. Specialists of the Institute of Oil and Gas Problems under the guidance of Academician Dmitrievsky offer their explanation.

The earth's crust is similar to a sandwich cake, consisting of hard layers and fractured-porous layers saturated by various fluids, including oil. In some places, the crust is penetrated by an extremely dense network of fissures and ruptures. Ruptures form cavities located almost horizontally and united into a network.

All this complicated system is in constant motion due to tectonic forces’ action. The layers are moving, fissures are widening and acting as a rubber bulb: liquid starts coming into formed interstice from surrounding porous layers. In case of significant tectonic tensions, liquid moves at large distances.

According to the researchers’ opinion, this mechanism of liquid movement in the crust is the most intense and universal among all possible ones. It acts both in ruptures and in thin fractured layers, which stretch at significant distances. Vibrations in the crust drive fluids along all possible directions, including horizontal and even downward directions. Migration occurs along lengthy cavities and fractures systems, located at the depth of 10 to 15 kilometers.

Liquid movement caused by widening of internal cavities is of vibrating character. Oil sometimes rushes in or sometimes floods back. The mode and period of vibration depend on the size of perturbed area. In large porous layers, the vibration period makes about 10 thousand years. In the ruptures, the period is shorter and it varies from a thousand to hundreds and even dozens of years, if rupture zones are located at small depths.

The researchers have investigated the carbohydrates migration process from the petroliferous stratum into the upper layers in several regions. An example can be the Romashinskoye oilfield in Tatarstan. The volume of produced oil there has significantly exceeded the previously asserted reserves. According to the TATANEFT Joint Stock Company’s data, more than 65% of oil in Tatarstan is produced in old oilfields exhausted by 80%. However, supplementary exploration of the known deposits allowed to increment reserves of oil by one and a half times within the last 25 years. In the Romashinskoye oilfield, the researchers also discovered old exhausted drillings with regenerated inflow of oil and oil with water. The space of oil pools and their reserves increase with increasing rupture network density. It is interesting to note that the depth of sedimentary covering in the zone of the gigantic Romashinskoye oilfield does not exceed 2 kilometers on average, and this mantle does not possess significant oil potential. Most likely, oil cames to these locations from the direction of Pre-Ural downfold.

In the researchers’ opinion, to overhaul old oil deposits is currently much more profitable and efficient than expensive geological exploration works at new locations.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>