Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paired earthquakes separated in time and space

31.01.2008
Earthquakes occurring at the edges of tectonic plates can trigger events at a distance and much later in time, according to a team of researchers reporting in today's (Jan. 31) issue of Nature. These doublet earthquakes may hold an underestimated hazard, but may also shed light on earthquake dynamics.

"The last great outer rise earthquakes that occurred were in the 1930s and 1970s," said Charles J. Ammon, associate professor of geoscience, Penn State. "We did not then have the equipment to record the details of those events." The outer rise is the region seaward of the deep-sea trench that marks the top of the plate boundary

In late 2006 and early 2007, two large earthquakes occurred near Japan separated by about 60 days. These earthquakes took place in the area of the Kuril Islands that are located from the westernmost point of the Japanese Island of Hokkaido to the southern tip of the Kamchatka Peninsula. The first event took place on Nov. 15, 2006 when the edge of the Pacific plate thrust under the arc of the Kuril Islands, initiating a magnitude 8.3 event and causing some damage in Japan and a small tsunami that caused minor damage in Crescent City, California. About 60 days later, on Jan. 13, 2007, a magnitude 8.1 earthquake occurred in "the upper portion of the Pacific plate, producing one of the largest recorded shallow extensional earthquakes."

This second earthquake was not at a plate boundary and was not directly caused by subduction -- the moving of one plate beneath the other. Rather, it was a normal faulting event, where the Pacific plate stretched, bent and broke.

While Japan and the Kamchatka Peninsula are active earthquake areas, the region of the Kuril Islands where the large November earthquake occurred, had not had a large earthquake since 1915 and researchers are unsure of the exact nature of that event.

Working with Hiroo Kanamori, the John E. and Hazel S. Smits professor of geophysics, emeritus, California Institute of Technology, and Thorne Lay, professor of Earth & planetary sciences, University of California, Santa Cruz, the Penn State researcher looked at the sequence of seismic activity that link these two earthquakes into a doublet.

"Such large doublet earthquakes, though rare, could be an underestimated hazard," says Ammon. "We are also interested in what these events tell us about how earthquakes interact, how the stresses and interactions allow one earthquake to trigger another."

Looking at the seismic record, the researchers found a series of smaller, foreshock earthquakes beginning about 45 days before Nov. 15. On Nov. 15, there was the magnitude 8.3 earthquake on the plate boundary, the largest event of 2006.

"Within minutes of the Nov. 15 earthquake, seismic activity began on the Pacific plate in the area where the January earthquake would take place," says Ammon. "This large second earthquake generated a larger amplitude of shaking in the frequency range that affects human-made structures than the first earthquake."

Usually, aftershocks from a large earthquake are at least one order of magnitude less than the main event and taper off rapidly. In this case, the events within the Pacific plate east of the plate boundary did not taper off, and the second event that occurred in January was about the same size as the first earthquake.

Earthquakes at plate boundaries in subduction zones occur when the plate that is going under – being subducted – gets temporarily stuck and causes compression in the plate away from the edge. Tension builds and when the plate overcomes the friction holding it, it moves downward, slipping under the top plate and causing an earthquake. According to the researchers, the second earthquake that occurred on the Pacific plate happened because of bending experienced by the pacific plate that occurs before it subducts beneath the upper plate. As the front edge of the plate slipped, the plate east of the November earthquake bent, cracked and broke in January.

Like pie crust, when the Earth's crust bends, small cracks begin to appear – these were the small shocks that began immediately after the first earthquake – but when the bending becomes severe, a larger region of the crust breaks – creating the second, very large event.

In the United States, subduction zones exist only in the Pacific Northwest, Alaska and the area around Puerto Rico. The researchers note, "Triggering of a large outer rise rupture with strong high-frequency shaking constitutes an important potential seismic hazard that needs to be considered in other regions."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>