Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paired earthquakes separated in time and space

31.01.2008
Earthquakes occurring at the edges of tectonic plates can trigger events at a distance and much later in time, according to a team of researchers reporting in today's (Jan. 31) issue of Nature. These doublet earthquakes may hold an underestimated hazard, but may also shed light on earthquake dynamics.

"The last great outer rise earthquakes that occurred were in the 1930s and 1970s," said Charles J. Ammon, associate professor of geoscience, Penn State. "We did not then have the equipment to record the details of those events." The outer rise is the region seaward of the deep-sea trench that marks the top of the plate boundary

In late 2006 and early 2007, two large earthquakes occurred near Japan separated by about 60 days. These earthquakes took place in the area of the Kuril Islands that are located from the westernmost point of the Japanese Island of Hokkaido to the southern tip of the Kamchatka Peninsula. The first event took place on Nov. 15, 2006 when the edge of the Pacific plate thrust under the arc of the Kuril Islands, initiating a magnitude 8.3 event and causing some damage in Japan and a small tsunami that caused minor damage in Crescent City, California. About 60 days later, on Jan. 13, 2007, a magnitude 8.1 earthquake occurred in "the upper portion of the Pacific plate, producing one of the largest recorded shallow extensional earthquakes."

This second earthquake was not at a plate boundary and was not directly caused by subduction -- the moving of one plate beneath the other. Rather, it was a normal faulting event, where the Pacific plate stretched, bent and broke.

While Japan and the Kamchatka Peninsula are active earthquake areas, the region of the Kuril Islands where the large November earthquake occurred, had not had a large earthquake since 1915 and researchers are unsure of the exact nature of that event.

Working with Hiroo Kanamori, the John E. and Hazel S. Smits professor of geophysics, emeritus, California Institute of Technology, and Thorne Lay, professor of Earth & planetary sciences, University of California, Santa Cruz, the Penn State researcher looked at the sequence of seismic activity that link these two earthquakes into a doublet.

"Such large doublet earthquakes, though rare, could be an underestimated hazard," says Ammon. "We are also interested in what these events tell us about how earthquakes interact, how the stresses and interactions allow one earthquake to trigger another."

Looking at the seismic record, the researchers found a series of smaller, foreshock earthquakes beginning about 45 days before Nov. 15. On Nov. 15, there was the magnitude 8.3 earthquake on the plate boundary, the largest event of 2006.

"Within minutes of the Nov. 15 earthquake, seismic activity began on the Pacific plate in the area where the January earthquake would take place," says Ammon. "This large second earthquake generated a larger amplitude of shaking in the frequency range that affects human-made structures than the first earthquake."

Usually, aftershocks from a large earthquake are at least one order of magnitude less than the main event and taper off rapidly. In this case, the events within the Pacific plate east of the plate boundary did not taper off, and the second event that occurred in January was about the same size as the first earthquake.

Earthquakes at plate boundaries in subduction zones occur when the plate that is going under – being subducted – gets temporarily stuck and causes compression in the plate away from the edge. Tension builds and when the plate overcomes the friction holding it, it moves downward, slipping under the top plate and causing an earthquake. According to the researchers, the second earthquake that occurred on the Pacific plate happened because of bending experienced by the pacific plate that occurs before it subducts beneath the upper plate. As the front edge of the plate slipped, the plate east of the November earthquake bent, cracked and broke in January.

Like pie crust, when the Earth's crust bends, small cracks begin to appear – these were the small shocks that began immediately after the first earthquake – but when the bending becomes severe, a larger region of the crust breaks – creating the second, very large event.

In the United States, subduction zones exist only in the Pacific Northwest, Alaska and the area around Puerto Rico. The researchers note, "Triggering of a large outer rise rupture with strong high-frequency shaking constitutes an important potential seismic hazard that needs to be considered in other regions."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>