Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baffin Island ice caps shrink by 50 percent since 1950s

30.01.2008
Researchers also find tantalizing evidence that ancient tropical eruptions of volcanoes triggered Little Ice Age

A new University of Colorado at Boulder study has shown that ice caps on the northern plateau of Baffin Island in the Canadian Arctic have shrunk by more than 50 percent in the last half century as a result of warming, and are expected to disappear by the middle of the century.

Radiocarbon dating of dead plant material emerging from beneath the receding ice margins show the Baffin Island ice caps are now smaller in area than at any time in at least the last 1,600 years, said geological sciences Professor Gifford Miller of CU-Boulder's Institute of Arctic and Alpine Research. "Even with no additional warming, our study indicates these ice caps will be gone in 50 years or less," he said.

The study also showed two distinct bursts of Baffin Island ice-cap growth commencing about 1280 A.D. and 1450 A.D., each coinciding with ice-core records of increases in stratospheric aerosols tied to major tropical volcanic eruptions, Miller said. The unexpected findings "provide tantalizing evidence that the eruptions were the trigger for the Little Ice Age," a period of Northern Hemisphere cooling that lasted from roughly 1250 to 1850, he said.

A paper on the subject was published online in Geophysical Research Letters and featured in the Jan. 28 edition of the American Geophysical Union journal highlights. Authors on the study included Miller, graduate students Rebecca Anderson and Stephen DeVogel of INSTAAR, Jason Briner of the State University of New York at Buffalo and Nathaniel Lifton of the University of Arizona.

Located just west of Greenland, the 196,000 square-mile Baffin Island is the fifth largest island in the world. Most of it lies above the Arctic Circle.

The researchers also used satellite data and aerial photos beginning in 1949 to document the shrinkage of more than 20 ice caps on the northern plateau of Baffin Island, which are up to 4 miles long, generally less than 100 yards thick and frozen to their beds. "The ice is so cold and thin that it doesn't flow, so the ancient landscape on which they formed is preserved pretty much intact," said Miller.

In addition to carbon-dating plant material from the ice edges, the researchers extracted and analyzed carbon 14 that formed inside the Baffin Island rocks as a result of ongoing cosmic radiation bombardment, revealing the amount of time the rocks have been exposed, he said. The analysis of carbon 14 in quartz crystals indicated that for several thousand years prior to the last century, there had been more ice cover on Baffin Island, Miller said.

The increase of ice extent across the Arctic in recent millennia is thought to be due in large part to decreasing summer solar radiation there as a result of a long-term, cyclic wobble in Earth's axis, said Miller. "This makes the recent ice-cap reduction on Baffin Island even more striking," he said.

Funded primarily by the National Science Foundation, the study is among the first to use radiocarbon samples from rocks for dating purposes, Miller said. The radiocarbon portion of the study was conducted at INSTAAR and the University of Arizona.

Temperatures across the Arctic have been rising substantially in recent decades as a result of the build up of greenhouse gases in Earth's atmosphere. Studies by CU-Boulder researchers in Greenland indicate temperatures on the ice sheet have climbed 7 degrees Fahrenheit since 1991.

Gifford Mller | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>