Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baffin Island ice caps shrink by 50 percent since 1950s

30.01.2008
Researchers also find tantalizing evidence that ancient tropical eruptions of volcanoes triggered Little Ice Age

A new University of Colorado at Boulder study has shown that ice caps on the northern plateau of Baffin Island in the Canadian Arctic have shrunk by more than 50 percent in the last half century as a result of warming, and are expected to disappear by the middle of the century.

Radiocarbon dating of dead plant material emerging from beneath the receding ice margins show the Baffin Island ice caps are now smaller in area than at any time in at least the last 1,600 years, said geological sciences Professor Gifford Miller of CU-Boulder's Institute of Arctic and Alpine Research. "Even with no additional warming, our study indicates these ice caps will be gone in 50 years or less," he said.

The study also showed two distinct bursts of Baffin Island ice-cap growth commencing about 1280 A.D. and 1450 A.D., each coinciding with ice-core records of increases in stratospheric aerosols tied to major tropical volcanic eruptions, Miller said. The unexpected findings "provide tantalizing evidence that the eruptions were the trigger for the Little Ice Age," a period of Northern Hemisphere cooling that lasted from roughly 1250 to 1850, he said.

A paper on the subject was published online in Geophysical Research Letters and featured in the Jan. 28 edition of the American Geophysical Union journal highlights. Authors on the study included Miller, graduate students Rebecca Anderson and Stephen DeVogel of INSTAAR, Jason Briner of the State University of New York at Buffalo and Nathaniel Lifton of the University of Arizona.

Located just west of Greenland, the 196,000 square-mile Baffin Island is the fifth largest island in the world. Most of it lies above the Arctic Circle.

The researchers also used satellite data and aerial photos beginning in 1949 to document the shrinkage of more than 20 ice caps on the northern plateau of Baffin Island, which are up to 4 miles long, generally less than 100 yards thick and frozen to their beds. "The ice is so cold and thin that it doesn't flow, so the ancient landscape on which they formed is preserved pretty much intact," said Miller.

In addition to carbon-dating plant material from the ice edges, the researchers extracted and analyzed carbon 14 that formed inside the Baffin Island rocks as a result of ongoing cosmic radiation bombardment, revealing the amount of time the rocks have been exposed, he said. The analysis of carbon 14 in quartz crystals indicated that for several thousand years prior to the last century, there had been more ice cover on Baffin Island, Miller said.

The increase of ice extent across the Arctic in recent millennia is thought to be due in large part to decreasing summer solar radiation there as a result of a long-term, cyclic wobble in Earth's axis, said Miller. "This makes the recent ice-cap reduction on Baffin Island even more striking," he said.

Funded primarily by the National Science Foundation, the study is among the first to use radiocarbon samples from rocks for dating purposes, Miller said. The radiocarbon portion of the study was conducted at INSTAAR and the University of Arizona.

Temperatures across the Arctic have been rising substantially in recent decades as a result of the build up of greenhouse gases in Earth's atmosphere. Studies by CU-Boulder researchers in Greenland indicate temperatures on the ice sheet have climbed 7 degrees Fahrenheit since 1991.

Gifford Mller | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Seabed mining could destroy ecosystems
23.01.2018 | University of Exeter

nachricht How climate change weakens coral 'immune systems'
23.01.2018 | Ohio State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>