Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's getting 'soft' in the middle

28.01.2008
Since we can’t sample the deepest regions of the Earth, scientists watch the velocity of seismic waves as they travel through the planet to determine the composition and density of that material.

Now a new study suggests that material in part of the lower mantle has unusual electronic characteristics that make sound propagate more slowly, suggesting that the material there is softer than previously thought. The results call into question the traditional techniques for understanding this region of the planet. The authors, including Alexander Goncharov from the Carnegie Institution’s Geophysical Laboratory, present their results in the January 25, 2008, issue of Science.

The lower mantle extends from about 400 miles to 1800 miles (660-2900 kilometers) into Earth and sits atop the outer core. Pressures and temperatures are so brutal there that materials are changed into forms that don’t exist in rocks at the planet’s surface and must be studied under carefully controlled conditions in the laboratory. The pressures range from 230,000 times the atmospheric pressure at sea level (23 GPa), to 1.35 million times sea-level pressure (135 GPa). And the heat is equally extreme—from about 2,800 to 6,700 degrees Fahrenheit (1800K–4000K).

Iron is abundant in the Earth, and is a major component of the minerals ferropericlase and the silicate perovskite in the lower mantle. In previous work, researchers found that the outermost electrons of iron in ferropericlase are forced to pair up under the extreme pressures creating a so-called spin-transition zone within the lower mantle.

“What happens when unpaired electrons—called a high-spin state—are forced to pair up is that they transition to what is called a low-spin state. And when that happens, the conductivity, density, and chemical properties change,” explained Goncharov. “What’s most important for seismology is the acoustic properties—the propagation of sound. We determined the elasticity of ferropericlase through the pressure-induced high-spin to low-spin transition. We did this by measuring the velocity of acoustic waves propagating in different directions in a single crystal of the material and found that over an extended pressure range (from about 395,000 to 590,000 atmospheres) the material became ‘softer’—that is, the waves slowed down more than expected from previous work. Thus, at high temperature corresponding distributions will become very broad, which will result in a wide range of depth having subtly anomalous properties that perhaps extend through most of the lower mantle.”

The results suggest that scientists may have to go back to the drawing board to model this region of the Earth.

Alexander Goncharov | EurekAlert!
Further information:
http://www.gl.ciw.edu
http://www.CIW.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>