Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic ice loss speeds up, nearly matches Greenland loss

25.01.2008
Ice loss in Antarctica increased by 75 percent in the last 10 years due to a speed-up in the flow of its glaciers and is now nearly as great as that observed in Greenland, according to a new, comprehensive study by UC Irvine and NASA scientists.

In a first-of-its-kind study, an international team led by Eric Rignot, professor of Earth system science at UCI and a scientist with NASA’s Jet Propulsion Laboratory, Pasadena, Calif., estimated changes in Antarctica’s ice mass between 1996 and 2006 and mapped patterns of ice loss on a glacier-by-glacier basis. They detected a sharp jump in Antarctica’s ice loss, from enough ice to raise global sea level by 0.3 millimeters (.01 inches) a year in 1996, to 0.5 millimeters (.02 inches) a year in 2006.

Rignot said the losses, which were primarily concentrated in West Antarctica’s Pine Island Bay sector and the northern tip of the Antarctic Peninsula, are caused by ongoing and past acceleration of glaciers into the sea. This is mostly a result of warmer ocean waters, which bathe the buttressing floating sections of glaciers, causing them to thin or collapse. “Changes in Antarctic glacier flow are having a significant, if not dominant, impact on the mass balance of the Antarctic ice sheet,” he said.

Results of the study are published in February’s issue of Nature Geoscience.

To infer the ice sheet’s mass, the team measured ice flowing out of Antarctica’s drainage basins over 85 percent of its coastline. They used 15 years of satellite radar data from the European Earth Remote Sensing-1 and -2, Canada’s Radarsat-1 and Japan’s Advanced Land Observing satellites to reveal the pattern of ice sheet motion toward the sea. These results were compared with estimates of snowfall accumulation in Antarctica’s interior derived from a regional atmospheric climate model spanning the past quarter century.

The team found that the net loss of ice mass from Antarctica increased from 112 (plus or minus 91) gigatonnes a year in 1996 to 196 (plus or minus 92) gigatonnes a year in 2006. A gigatonne is one billion metric tons, or more than 2.2 trillion pounds. These new results are about 20 percent higher over a comparable time frame than those of a NASA study of Antarctic mass balance last March that used data from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment. This is within the margin of error for both techniques, each of which has its strengths and limitations.

Rignot says the increased contribution of Antarctica to global sea level rise indicated by the study warrants closer monitoring.

“Our new results emphasize the vital importance of continuing to monitor Antarctica using a variety of remote sensing techniques to determine how this trend will continue and, in particular, of conducting more frequent and systematic surveys of changes in glacier flow using satellite radar interferometry,” Rignot said. “Large uncertainties remain in predicting Antarctica’s future contribution to sea level rise. Ice sheets are responding faster to climate warming than anticipated.”

Rignot said scientists are now observing these climate-driven changes over a significant fraction of the West Antarctic Ice Sheet, and the extent of the glacier ice losses is expected to keep rising in the years to come. “Even in East Antarctica, where we find ice mass to be in near balance, ice loss is detected in its potentially unstable marine sectors, warranting closer study,” he said.

Other organizations participating in the NASA-funded study are Centro de Estudios Cientificos, Valdivia, Chile; University of Bristol, United Kingdom; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands; University of Missouri, Columbia, Mo.; and the Royal Netherlands Meteorological Institute, De Bilt, The Netherlands.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, and nearly 2,000 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.6 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>