Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Antarctic ice core to provide clearest climate record yet

25.01.2008
After enduring months on the coldest, driest, and windiest continent on Earth, researchers today closed out the inaugural season on an unprecedented, multi-year effort to retrieve the most detailed record of greenhouse gases in Earth’s atmosphere over the last 100,000 years.

Working as part of the National Science Foundation’s West Antarctic Ice Sheet Divide (WAIS Divide) Ice Core Project, a team of scientists, engineers, technicians, and students from multiple U.S. institutions have recovered a 580-meter (1,900-foot) ice core – the first section of what is hoped to be a 3,465-meter (11,360-foot) column of ice detailing 100,000 years of Earth’s climate history, including a precise year-by-year record of the last 40,000 years.

The dust, chemicals, and air trapped in the two-mile-long ice core will provide critical information for scientists working to predict the extent to which human activity will alter Earth’s climate, according to the chief scientist for the project, Kendrick Taylor of the Desert Research Institute of the Nevada System of Higher Education. DRI, along with the University of New Hampshire, operates the Science Coordination Office for the WAIS Divide Project.

WAIS Divide, named for the high-elevation region that is the boundary separating opposing flow directions on the ice sheet, is the best spot on the planet to recover ancient ice containing trapped air bubbles – samples of the Earth’s atmosphere from the present to as far back as 100,000 years ago.

While other ice cores have been used to develop longer records of Earth’s atmosphere, the record from WAIS Divide will allow a more detailed study of the interaction of previous increases in greenhouse gases and climate change. This information will improve computer models that are used to predict how the current unprecedented high levels of greenhouse gases in the atmosphere caused by human activity will influence future climate.

The WAIS Divide core is also the Southern Hemisphere equivalent of a series of ice cores drilled in Greenland beginning in 1989, and it will provide the best opportunity for scientists to determine if global-scale climate changes that occurred before human activity started to influence climate were initiated in the Arctic, the tropics, or Antarctica.

The new core will also allow investigations of biological material in deep ice, which will yield information about biogeochemical processes that control and are controlled by climate, as well as lead to fundamental insights about life on Earth.

Says Taylor, “We are very excited to work with ancient ice that fell as snow as long as 100,000 years ago. We read the ice like other people might read a stack of old weather reports.”

The WAIS project took more than 15 years of planning and preparation, including extensive airborne reconnaissance and ground-based geophysical research, to pinpoint the one-square-kilometer (less than a square mile) space on the 932,000-square-kilometer (360,000-square-mile) ice sheet that scientists believe will provide the clearest climate record for the last 100,000 years.

With only some 40 days a year when the weather is warm enough for drilling – yesterday’s temperature was a balmy -15 degrees Celsius (5 degrees Fahrenheit) – it is expected to take until January 2010 to complete the fieldwork.

For the project, Ice Coring and Drilling Services of the University of Wisconsin-Madison built and is operating a state-of-the-art, deep ice-coring drill, which is more like a piece of scientific equipment than a conventional rock drill used in petroleum exploration. The U.S. Geological Survey National Ice Core Laboratory in Denver designed the core handling system. Raytheon Polar Services Corporation provides the logistical support. The NSF Office of Polar Programs-U.S. Antarctic Program funds the project. The core will be archived at the National Ice Core Laboratory, which is run by the USGS with funding from NSF.

David Sims | EurekAlert!
Further information:
http://www.waisdivide.unh.edu
http://www.unh.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>