Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered active fault building new Dalmatian Islands off Croatian coast

24.01.2008
A newly identified fault that runs under the Adriatic Sea is actively building more of the famously beautiful Dalmatian Islands and Dinaride Mountains of Croatia, according to a new research report.

Geologists had previously believed that the Dalmatian Islands and the Dinaride Mountains had stopped growing 20 to 30 million years ago.

From a region northwest of Dubrovnik, the new fault runs northwest at least 200 km (124 miles) under the sea floor.

The Croatian coast and the 1,185 Dalmatian Islands are an increasing popular tourist destination. Dubrovnik, known as "the Pearl of the Adriatic," is a UNESCO-designated World Heritage site.

At the fault, the leading edge of the Eurasian plate is scraping and sliding its way over a former piece of the African plate called the South Adria microplate, said lead researcher Richard A. Bennett of The University of Arizona in Tucson.

"It's a collision zone," said Bennett, a UA assistant professor of geosciences. "Two continents are colliding and building mountains."

Bennett and his colleagues found that Italy's boot heel is moving toward the Croatian coast at the rate of about 4 mm (0.16 inches) per year. By contrast, movement along parts of California's San Andreas fault can be 10 times greater.

The region along the undersea fault has no evidence of large-magnitude earthquakes occurring in the last 2,000 years. However, if the fault is the type that could move abruptly and cause earthquakes, tsunami calculations for the region need to be redone, he said.

"It has implications for southern Italy, Croatia, Montenegro and Albania."

At its southern end, the newly identified fault connects to a seismically active fault zone further south that caused a large-magnitude earthquake in Dubrovnik in 1667 and a magnitude 7.1 earthquake in Montenegro in 1979.

Bennett and his colleagues published their article, "Eocene to present subduction of southern Adria mantle lithosphere beneath the Dinarides," in the January issue of the journal Geology. His co-authors are UA geoscientists Sigrún Hreinsdóttir and Goran Buble; Tomislav Bašiæ of the University of Zagreb and the Croatian Geodetic Institute; Željko BaÈiæ and Marijan Marjanoviæ of the Croatian State Geodetic Administration in Zagreb; Gabe Casale, Andrew Gendaszek and Darrel Cowan of the University of Washington in Seattle.

The research was funded by the Croatian Geodetic Administration and the U.S. National Science Foundation.

Geologists have been trying to figure out how the collision between the African and Eurasian continents is being played out in the Mediterranean.

Bennett was studying the geology of Italy's Alps and Apennine Mountains and realized he needed to know more about the mountains on the other side of the Adriatic.

The Croatian mountains and coasts are relatively understudied, in part because of years of political turmoil in the region, he said. So he teamed up with Croatian geologists.

Bennett is an expert in a technique called geodesy that works much like the GPS in a car.

"We put GPS units on rocks and watch them move around," he said. "We leave an antennae fixed to a rock and record its movement all the time. We basically just watch it move."

Just as the GPS in a rental car uses global positioning satellites to tell where the car is relative to a desired destination, the geodesy network can tell where one antenna and its rock are relative to another antenna.

Recent improvements in the technology make it possible to see very small movements of the Earth. He said, "In Croatia we can resolve motions at the level of about one mm per year."

The researchers found that the motion between Italy’s boot heel and Eurasia is absorbed at the Dinaride Mountains and Dalmatian Islands.

Combining geodetic data with other geological information revealed that the movement is accommodated by a previously unknown fault under the Adriatic.

Bennett likens movement of the Eurasian plate to a snowplow blade piling up snow in front of it. The snow represents the sea floor being pushed up to form the Dalmatian Islands and the Dinaride Mountains.

"You can see hints of new islands out there," he said.

But those islands may not provide seaside vacations forever. Bennett said the Adriatic Sea is closing up at the rate of 4.5 km (2.8 miles) per million years. If things continue as they are now, he calculates the eastern and western shores of the Adriatic Sea will meet in about 50 to 70 million years.

"This new finding is an important piece in the puzzle to understanding Mediterranean tectonics," he said.

He plans to set out more antennas to learn more about current movement of the region and to figure out what the fault has been doing for the past 40 million years.

The additional information will also help gauge the region's earthquake potential.

Bennett said, "We want to see if the fault is freely slipping or is accumulating strain and therefore may produce a large earthquake in the future."

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>