Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot springs microbes hold key to dating sedimentary rocks

24.01.2008
Scientists studying microbial communities and the growth of sedimentary rock at Mammoth Hot Springs in Yellowstone National Park have made a surprising discovery about the geological record of life and the environment.

Their discovery could affect how certain sequences of sedimentary rock are dated, and how scientists might search for evidence of life on other planets.

“We found microbes change the rate at which calcium carbonate precipitates, and that rate controls the chemistry and shape of calcium carbonate crystals,” said Bruce Fouke, a professor of geology and of molecular and cellular biology at the University of Illinois.

In fact, the precipitation rate can more than double when microbes are present, Fouke and his colleagues report in a paper accepted for publication in the Geological Society of America Bulletin.

The researchers’ findings imply changes in calcium carbonate mineralization rates in the rock record may have resulted from changes in local microbial biomass concentrations throughout geologic history.

A form of sedimentary rock, calcium carbonate is the most abundant mineral precipitated on the surface of Earth, and a great recorder of life.

“As calcium carbonate is deposited, it leaves a chemical fingerprint of the animals and environment, the plants and bacteria that were there,” said Fouke, who also is affiliated with the university’s Institute for Genomic Biology.

The extent to which microorganisms influence calcium carbonate precipitation has been one of the most controversial issues in the field of carbonate sedimentology and geochemistry. Separating biologically precipitated calcium carbonate from non-biologically precipitated calcium carbonate is difficult.

Fouke’s research team has spent 10 years quantifying the physical, chemical and biological aspects of the hot springs environment. The last step in deciphering the calcium carbonate record was performing an elaborate field experiment, which drew water from a hot springs vent and compared deposition rates with and without microbes being present.

“Angel Terrace at Mammoth Hot Springs in Yellowstone National Park is an ideal, natural laboratory because of the high precipitation rates and the abundance of microbes,” Fouke said. “Calcium carbonate grows so fast – millimeters per day – we can examine the interaction between microorganisms and the calcium-carbonate precipitation process.”

The researchers found that the rate of precipitation drops drastically – sometimes by more than half – when microbes are not present.

“So one of the fingerprints of calcium carbonate deposition that will tell us for sure if there were microbes present at the time it formed is the rate at which it formed,” Fouke said. “And, within the environmental and ecological context of the rock being studied, we can now use chemistry to fingerprint the precipitation rate.”

In a second paper, to appear in the Journal of Sedimentary Research, Fouke and colleagues show how the calcium carbonate record in a spring’s primary flow path can be used to reconstruct the pH, temperature and flux of ancient hot springs environments. The researchers also show how patterns in calcium carbonate crystallization can be used to differentiate signatures of life from those caused by environmental change.

“This means we can go into the rock record, on Earth or other planets, and determine if calcium carbonate deposits were associated with microbial life,” Fouke said.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>